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SIR Model — Initial Dynamics i
The number of cases at any given time grows like™: *The same growth rate
. . )\t holds for the cumulative
1 (t) p— ’LO é number of cases.
where

A= (Ro—1)/T;

In practice, an estimate of the epidemic growth rate A can be used to infer
the unknown value of Ko

Page 6



SIR Model — Initial Dynamics i
The number of cases at any given time grows like™: *The same growth rate
. . )\t holds for the cumulative
Z(t) p— 7/06 number of cases.
where
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A= (Ro—1) /T

In practice, an estimate of the epidemic growth rate A can be used to infer
the unknown value of Ko

Yet: many combinations of infectious period and the basic reproductive
number yield the same apparent growth rate (previous slides used synthetic
data to illustrate this point).
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A= (Ro—1) /T

In practice, an estimate of the epidemic growth rate A can be used to infer
the unknown value of Ko

Yet: many combinations of infectious period and the basic reproductive
number yield the same apparent growth rate (previous slides used synthetic
data to illustrate this point).

This is called an “identifiability problem” (see Keeling & Rohani, 2007)



SIR Model — Initial Dynamics i

Question: consider data on an epidemic in which A = |/4 weeks where
Disease |: T,= 1 week

Disease 2: T, = 4 weeks
Which disease has the higher Ry?
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SIR Model — Initial Dynamics i

Question: consider data on an epidemic in which A = |/4 weeks where
Disease |: T,= 1 week

Disease 2: T, = 4 weeks
Which disease has the higher Ry?

Answer: Disease 2
Algebra: Ro=1+1T7\

Disease |: Ro=1.25
Disease 2: Ro=2
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SIR Model = Initial Dynamics i emEN e
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Question: consider data on an epidemic in which A = |/4 weeks where
Disease |: T,= 1 week

Disease 2: T, = 4 weeks
Which disease has the higher Ry?

Answer: Disease 2

Algebra: Ro=1+1T7\
Disease |: Ro=1.25
Disease 2: Ro=2

Intuition:

Disease | takes 4 infectious periods to “double” the case count.

Disease 2 takes only | infectious period to “double” the case count.
Hence, disease 2 has a higher average number of secondary infections per
average infectious period (the definition of R).



Given observations of case data from an epidemic:
* Multiple models can equally “fit”.

* These models may differ in their underlying mechanismes,
including the basic reproductive number.

* Despite equivalent early-dynamics, the consequences can be
very different at later times and for control.

Today:

Inferring the basic reproductive number from epidemic data, with
applications to the Ebola epidemic in West Africa.
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Part | of 2: Uncertainty in estimating R, arising
from uncertainty in the timing of infectious
events, pre- and post-death.

Focus today

Part 2 of 2: Uncertainty in estimating R, arising
from the discrete transmission process.

Future topic?
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SEIR-D Model of Ebola Dynamics

A subset of recent models (e.g.,; Lewnard et al., Lanc. Inf. Dis. 2014; Gomes et al., PLoS Curr
Outbreaks, 2014; Pandey et al., Sci 2014, Weitz & Dushoff, Sci Rep, 20135, in press )
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Working Assumptions: Same as SEIR model, except:

A fraction |-f of infected individuals recover and are moved into the R class.
A fraction f of infected individuals die and are moved into the D class.

Dead (but as yet unburied) individuals can transmit disease to S individuals.

r0e1« De€ad individuals are buried with a characteristic time T



SEIR-D Model

Consider an SEIR-D model in which
Latent period: T = || days
Infectious period: T, = 6 days

Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...
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Consider an SEIR-D model in which

Latent period: T = || days
Infectious period: T, = 6 days
Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...

For which we do not know the
transmission rates and the time of
infectiousness after death:
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SEIR-D Model

Consider an SEIR-D model in which

Latent period: T = || days
Infectious period: T, = 6 days
Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...

For which we do not know the
transmission rates and the time of
infectiousness after death:
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same epidemic growth
rate?



Generating function
formalism

Consider an SEIR-D model in which

Latent period: T = || days
Infectious period: T, = 6 days
Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...

For which we do not know the
transmission rates and the time of
infectiousness after death:
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nWhat combinations of

parameters yield the
same epidemic growth
rate?




———————————————

Generating function s
- S
formalism Z

For the SEIRD model:

M(z) = (1 = pp)ME(2)M;(z) + pp Mg (2)M;(2)Mp(2)

Mi(—)) = ( bE )”E Here, as derived for a gamma
b + A distribution for exposed period.
Mi(=)) = — 1
7+ A Exponential distributions for
) = X * Infectious period
Mp(=)) = =5 P

* dead period



SEIR-D model dynamics

Consider an SEIR-D model in which

Latent period: T = || days
Infectious period: T, = 6 days
Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...

Multiple “scenarios” ®, @, and

all yield the same predicted epidemic
growth rate (using next-generation
matrix approach or similar methods).
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SEIR-D model dynamics

Consider an SEIR-D model in which

Latent period: T = || days
Infectious period: T, = 6 days
Probability of death: f=0.7

Given a characteristic time of ~3
weeks for the spread of disease...

These “scenarios” ®, @, and

all have a higher R, due to post-death
transmission when compared to a
SEIR model prediction.
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0 02 04 06 08 |
pp = Ro(dead) /Ry



SEIR-D model dynamics
Weitz & Dushoff (Sci Reports, in press), arXiv:1411.3435

Infected, I(t)

6 0i2 0..4 O..6 0..8 1
PD — Ro(dead)/RO
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On extending the model when recovery
times differ from time to death

QI1.What is the potential affect of changes
in the time to death vs. the time recovery
have on the present analysis?

Rationale: Time to recovery can be on the
order of 12-16 days whereas time to death
is only 6 days.
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On extending the model when recovery
times differ from time to death

QI1.What is the potential affect of changes 27 —Tip=6, Tir=06

===Tip=06,Tir=9

in the time to death vs. the time recovery
have on the present analysis?

Rationale: Time to recovery can be on the
order of 12-16 days whereas time to death
is only 6 days.

Answer: Increasing post-death transmission
leads to increases in estimates of RO. 2L

0 02 04 06 08 1
PD — Ro(dead)/Ro

Follow-up: investigate the hazard of

transmission during recovery and leading up

until death (unlikely to be constant).

Page 24



———————————————

SEIR-D Model s = <f .

SEIR-D model requires information on:

* Duration of the latent period

* Duration and infectivity of infectious individuals

* Duration and infectivity of dead, but still infectious, individuals.
Assume, for now, latent period is gamma-like, but that the

infectious and dead periods are exponential-like (can easily be
adapted using the method).
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How well can a SEIR-D model “fit” the
early exponential increase in EVD cases?

Data source: o] S G
m} Sile:rreiieone ¢
6000
Caitlin Rivers’ public datasets: e !
https://github.com/cmrivers/ebola .
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(PRSB, 2007)



Model fits to case data: Guinea
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Model fits to case data: Liberia
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Model fits to case data: Sierra Leone
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Uncertainty in R, for each country due to
identifiability problem based on SEIRD fits

- Country R, (10% post-death R, (40% post-death
fransmission) fransmission)
Guinea 1.22 1.24
Liberia 2.20 2.33
Sierra Leone 1.70 1.81

Point of interest: The uncertainty in R, arising from uncertainty
in chains of transmission may approach or even exceed that
from fitting a given dynamical model to case data.

Note: many early fits of EVD case data had very narrow Cls.
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SEIR-D Model e L <f

___________________________

Take-home messages:

Multiple “scenarios” @, ®, and @ all yield the same
predicted epidemic growth rate.

For a given growth rate, a larger proportion of post-death
transmission implies a larger value of R,,.

Optimistically, the effect on R, is modest, generally <10%,

so long as post-death transmission is relatively short in
duration compared to total period.
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Strategies and Thoughts Related to Post-
Death Transmission of Ebola

Contact-tracing of ~700 cases suggests that between
10%-30% of transmissions are due to transmission via
contact with dead individuals (see WHO-NEJM, SI).

Post-death transmission implies a longer “effective”
infectious period and, in turn, a modestly larger value of R,

But, improvements in burial practice may also lead to
substantial reductions in R, via:

* Reduction in post-death transmission rate
* Reduction in delay to burial
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Benefits of Control of Post-death

transmission (before /during burials)

Needed reduction in R,

&
in
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Needed reduction in R,
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Benefits of Control of Post-death
transmission (before /during burials)

Case |: Infectious (I) and dead
(D) periods are exponentially

distributed & 4 week
characteristic growth rate.
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Summary of analysis of post-death
transmission of Ebola

Take-home message |:

Estimates of R, for Ebola that focus on transmission while alive
will necessarily be under-estimates, when inferences are made
given the same epidemic growth data.

Take-home message 2:

Reduction of post-death transmission of Ebola may be substantial
(e.g., one-half) of the necessary reduction in secondary
transmission to stop epidemic spread (drop R, below I).

Take-home message 3:
Uncertainty in the “age”-dependent hazard is a barrier to
estimates of R, given case data. Hazard is unlikely to be constant!
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Part | of 2: Uncertainty in estimating R, arising
from uncertainty in the timing of infectious
events, pre- and post-death.

Weitz & Dushoff (in press) Scientific Reports & arXiv:1411.3435

Part 2 of 2: Uncertainty in estimating R, arising
from the discrete transmission process.

Future topic?



Questions?
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