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SIR Model – Initial Dynamics 

6	


S I R

�I

TI

The number of cases at any given time grows like*:	

	

	

	

where	

	

	

	

In practice, an estimate of the epidemic growth rate λ can be used to infer 
the unknown value of      .	

	

	


i(t) = i0e
�t

� = (R0 � 1) /TI

*The same growth rate 
holds for the cumulative 
number of cases.	


R0
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7	


S I R

�I

TI

The number of cases at any given time grows like*:	

	

	

	

where	

	

	

	

In practice, an estimate of the epidemic growth rate λ can be used to infer 
the unknown value of      .	

	

Yet: many combinations of infectious period and the basic reproductive 
number yield the same apparent growth rate (previous slides used synthetic 
data to illustrate this point).	

	


i(t) = i0e
�t

� = (R0 � 1) /TI

*The same growth rate 
holds for the cumulative 
number of cases.	
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SIR Model – Initial Dynamics 
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S I R

�I

TI

The number of cases at any given time grows like*:	

	

	

	

where	

	

	

	

In practice, an estimate of the epidemic growth rate λ can be used to infer 
the unknown value of      .	

	

Yet: many combinations of infectious period and the basic reproductive 
number yield the same apparent growth rate (previous slides used synthetic 
data to illustrate this point).	

	

This is called an “identifiability problem” (see Keeling & Rohani, 2007)	


i(t) = i0e
�t

� = (R0 � 1) /TI

*The same growth rate 
holds for the cumulative 
number of cases.	


R0
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SIR Model – Initial Dynamics 

9	


S I R

�I

TI

Question: consider data on an epidemic in which λ = 1/4 weeks where	

    Disease 1: 	
TI = 1 week	

    Disease 2: 	
TI = 4 weeks	

Which disease has the higher      ? 	

	

	


R0
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SIR Model – Initial Dynamics 
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S I R

�I

TI

Question: consider data on an epidemic in which λ = 1/4 weeks where	

    Disease 1: 	
TI = 1 week	

    Disease 2: 	
TI = 4 weeks	

Which disease has the higher      ? 	

	

Answer: Disease 2	

	

Algebra:  	

    Disease 1: 	
     = 1.25	

    Disease 2: 	
     = 2	

	


R0

R0 = 1 + TI�
R0

R0
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SIR Model – Initial Dynamics 
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S I R

�I

TI

Question: consider data on an epidemic in which λ = 1/4 weeks where	

    Disease 1: 	
TI = 1 week	

    Disease 2: 	
TI = 4 weeks	

Which disease has the higher      ? 	

	

Answer: Disease 2	

	

Algebra:  	

    Disease 1: 	
     = 1.25	

    Disease 2: 	
     = 2	

	

Intuition:	

Disease 1 takes 4 infectious periods to “double” the case count.	

Disease 2 takes only 1 infectious period to “double” the case count.  	

Hence, disease 2 has a higher average number of secondary infections per 
average infectious period (the definition of     ).	


R0

R0

R0 = 1 + TI�
R0

R0
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Given observations of case data from an epidemic:	

	

•  Multiple models can equally “fit”.	


•  These models may differ in their underlying mechanisms, 
including the basic reproductive number.	


	

•  Despite equivalent early-dynamics, the consequences can be 

very different at later times and for control.	


Today: 	

Inferring the basic reproductive number from epidemic data, with 
applications to the Ebola epidemic in West Africa.	
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Part 1 of 2: Uncertainty in estimating R0 arising 
from uncertainty in the timing of infectious 
events, pre- and post-death. 	

	

Focus today	

	

Part 2 of 2: Uncertainty in estimating R0 arising 
from the discrete transmission process. 	

	

Future topic?	
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SEIR-D Model of Ebola Dynamics 
A subset of recent models (e.g.,; Lewnard et al., Lanc. Inf. Dis. 2014; Gomes et al., PLoS Curr 
Outbreaks, 2014; Pandey et al., Sci 2014,  Weitz & Dushoff, Sci Rep, 2015, in press ) 

14	


Working Assumptions: Same as SEIR model, except:	

	

A fraction 1-f of infected individuals recover and are moved into the R class.	

	

A fraction f of infected individuals die and are moved into the D class.	

	

Dead (but as yet unburied) individuals can transmit disease to S individuals.	

	

Dead individuals are buried with a characteristic time TD	


S E I

R

D

�I

�D

TE TI

f

1� f

TD ?

 
 
Page 14



SEIR-D Model S E I
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f

1� f

TD ?

Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	
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Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	

	

For which we do not know the 
transmission rates and the time of 
infectiousness after death:	

	


βI    	
βD 	
TD	
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Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	

	

For which we do not know the 
transmission rates and the time of 
infectiousness after death:	

	


βI    	
βD 	
TD	

	


What combinations of 
parameters yield the 
same epidemic growth 
rate?	
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Generating function 
formalism 
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Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	

	

For which we do not know the 
transmission rates and the time of 
infectiousness after death:	

	


βI    	
βD 	
TD	

	


What combinations of 
parameters yield the 
same epidemic growth 
rate?	
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The roots of identifiability problems in estimating the basic reproductive number from early-stage epidemic

growth data

The identifiability problem raised in the main text is a generic issue in epidemiology. By means of illustration,
consider the spread of a disease that has no exposed stage, such that it can be suitably described using a SIR model.
Further assume that the basic reproductive number of the disease is to be estimated from epidemic case data in which
the number of cases is growing at a rate of �̂ = 1/28. The basic reproductive number for a SIR model is �TI , i.e.,
the transmission rate multiplied by the infectious period. The epidemic growth rate for a SIR model is � = �� 1/TI ,
i.e., the di↵erence between the transmission and recovery rate. This can be written as: � = TI(R0 � 1). Hence,
consider three scenarios, in which the true infectious period is TI = 14, 28 and 42 days. Each of these scenarios
is compatible with the same epidemic growth rate �̂ given R0 = 1.5, 2.0 and 2.5. Figure S.1 illustrates this point
using synthetic data. Note that for a given epidemic growth rate, diseases whose period of infectious is longer have
larger basic reproductive numbers. In the example above, a disease with an infectious period of 14 days requires 2
infection cycles (on average) to increase in case count by a factor of e (2.718). Whereas, a disease with an infectious
period of 28 days requires 1 infection cycle (on average) to increase in case count by a factor of e (2.718). This is the
intuition behind the seemingly paradoxical result that diseases with longer infectious periods are estimated to have
higher values of R0 when estimated via the same epidemic growth rate. Moreover, although the disease dynamics may
appear indistinguishable at early stages of an epidemic, the long-term dynamics can be quite di↵erent. For example,
Figure S.1 shows how diseases with higher values of R0 infect more people over the long-term despite having the same
early time dynamics. Controlling a disease with a higher value of R0 is also more di�cult.

Estimating the basic reproductive number, R0, for the SEIRD model given arbitrary intra-class period

distributions

Wallinga and Lipsitch [1] established a formal connection between R0 and the epidemic growth rate, here: �, such
that

R0 =
1

M(��)
(S.1)

where

M(z) =

Z 1

0
e

za
g(a)da (S.2)

The moment generating function M(z) operates on the distribution g(a) which, in epidemiological terms, is the
normalized fraction of all secondary cases caused by an infectious individual at “age” a since infection. For example,
if individuals are only infectious at a single age ac after infection, then g(a) = �(a�ac) where �(x) is the delta function.
Similarly, if individuals recover from being infected at a rate �, then g(a) = �e

��a, i.e., an exponential distribution.

⇤
Electronic address: jsweitz@gatech.edu; URL: http://ecotheory.biology.gatech.edu
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FIG. S.1: Identifiability problem in estimating R0 for a SIR model from exponential epidemic growth data. The synthetic data
(black circles) is I(t) / e�te1+ where � = 1/28, corresponding to a characteristic time of 4 weeks and where  is a normally
distributed random variable with mean 0 and standard deviation 0.2. The model fits correspond to solutions of SIR models
in which � = 0.107, 0.0714, and 0.0595 days�1 and TI = 14, 28 and 42 days respectively. The basic reproductive number in
each case is R0 = �TI = 1.5, 2.0 and 2.5 respectively. (Left panel) Each of the SIR model predictions fits the data equally
well at early times, despite having very di↵erent basic reproductive numbers. (Right panel) The predictions of the long-term
dynamics di↵er, with epidemic size increasing as a function of R0.

The advantage of this approach is that it is possible to uniquely identify the value of R0 given a measured epidemic
growth rate �̂ and additional information on the age distributions for secondary infections.
For the SEIRD model, the appropriate generating function is:

M(z) = (1� ⇢D)ME(z)MI(z) + ⇢DME(z)MI(z)MD(z) (S.3)

where ⇢D is the fraction of secondary transmission due to post-death transmission and 1 � ⇢D is the fraction of
secondary transmission due to pre-death transmission. We consider a gamma distributed exposed period with TE = 11
days, and shape parameters nE = 6 and bE = nE/TE (see Figure S.2) whose generating function is:

ME(��) =

✓
bE

bE + �

◆nE

(S.4)

We consider here exponentially-distributed periods for the I and D classes. The generating functions are:

MI(��) =
�

� + �

(S.5)

MD(��) =
�

�+ �

(S.6)

where � = 1/TI and � = 1/TD. Therefore for the SEIRD model, it is possible to estimate R0 using the generating
function method given observations of an epidemic growth rate and suitable information on epidemiological modes
and parameters.
This analysis assumed that the I and D classes are exponentially distributed with characteristic times of 6 and 3

days, respectively. A similar analysis can be performed in which the force of transmission is concentrated with di↵erent
distributions, e.g., uniform, unimodal or even concentrated at the very end of a fixed epidemic period (so-called delta
distributed).

For the SEIRD model:	
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The advantage of this approach is that it is possible to uniquely identify the value of R0 given a measured epidemic
growth rate �̂ and additional information on the age distributions for secondary infections.

For the SEIRD model, the appropriate generating function is:
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where ⇢D is the fraction of secondary transmission due to post-death transmission and 1 � ⇢D is the fraction of
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FIG. S.1: Identifiability problem in estimating R0 for a SIR model from exponential epidemic growth data. The synthetic data
(black circles) is I(t) / e�te1+ where � = 1/28, corresponding to a characteristic time of 4 weeks and where  is a normally
distributed random variable with mean 0 and standard deviation 0.2. The model fits correspond to solutions of SIR models
in which � = 0.107, 0.0714, and 0.0595 days�1 and TI = 14, 28 and 42 days respectively. The basic reproductive number in
each case is R0 = �TI = 1.5, 2.0 and 2.5 respectively. (Left panel) Each of the SIR model predictions fits the data equally
well at early times, despite having very di↵erent basic reproductive numbers. (Right panel) The predictions of the long-term
dynamics di↵er, with epidemic size increasing as a function of R0.

The advantage of this approach is that it is possible to uniquely identify the value of R0 given a measured epidemic
growth rate �̂ and additional information on the age distributions for secondary infections.

For the SEIRD model, the appropriate generating function is:

M(z) = (1� ⇢D)ME(z)MI(z) + ⇢DME(z)MI(z)MD(z) (S.3)

where ⇢D is the fraction of secondary transmission due to post-death transmission and 1 � ⇢D is the fraction of
secondary transmission due to pre-death transmission. We consider a gamma distributed exposed period with TE = 11
days, and shape parameters nE = 6 and bE = nE/TE (see Figure S.2) whose generating function is:

ME(��) =

✓
bE

bE + �

◆nE

(S.4)

We consider here exponentially-distributed periods for the I and D classes. The generating functions are:

MI(��) =
�

� + �

(S.5)

MD(��) =
�

�+ �

(S.6)

where � = 1/TI and � = 1/TD. Therefore for the SEIRD model, it is possible to estimate R0 using the generating
function method given observations of an epidemic growth rate and suitable information on epidemiological modes
and parameters.

This analysis assumed that the I and D classes are exponentially distributed with characteristic times of 6 and 3
days, respectively. A similar analysis can be performed in which the force of transmission is concentrated with di↵erent
distributions, e.g., uniform, unimodal or even concentrated at the very end of a fixed epidemic period (so-called delta
distributed).

Here, as derived for a gamma 
distribution for exposed period.	

	

Exponential distributions for	

•  Infectious period	

•  dead period	
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Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	

	

Multiple “scenarios”    ,    ,  and 	

all yield the same predicted epidemic 
growth rate (using next-generation 
matrix approach or similar methods).	
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Consider an SEIR-D model in which	

	

Latent period: 	
 	
TE = 11 days	

Infectious period: 	
 TI = 6 days	

Probability of death: 	
 f = 0.7	


Given a characteristic time of ~3 
weeks for the spread of disease…	

	

These “scenarios”    ,    ,  and 	

all have a higher R0 due to post-death 
transmission when compared to a 
SEIR model prediction.	
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Weitz & Dushoff (Sci Reports, in press), arXiv:1411.3435  
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On extending the model when recovery 
times differ from time to death 

	

Q1. What is the potential affect of changes 
in the time to death vs. the time recovery 
have on the present analysis?	

	

Rationale:  Time to recovery can be on the 
order of 12-16 days whereas time to death 
is only 6 days.	
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On extending the model when recovery 
times differ from time to death 

	

Q1. What is the potential affect of changes 
in the time to death vs. the time recovery 
have on the present analysis?	

	

Rationale:  Time to recovery can be on the 
order of 12-16 days whereas time to death 
is only 6 days.	

	

Answer: Increasing post-death transmission 
leads to increases in estimates of R0.  	

	

Follow-up: investigate the hazard of 
transmission during recovery and leading up 
until death (unlikely to be constant).	
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SEIR-D model requires information on:	

	

•  Duration of the latent period	


•  Duration and infectivity of infectious individuals	


•  Duration and infectivity of dead, but still infectious, individuals.	

	

Assume, for now, latent period is gamma-like, but that the 
infectious and dead periods are exponential-like (can easily be 
adapted using the method).	


SEIR-D Model S E I
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How well can a SEIR-D model “fit” the 
early exponential increase in EVD cases? 

26	


Data source:���
	

Caitlin Rivers’ public datasets:	

https://github.com/cmrivers/ebola	

	

Guinea 	
 	
	

Liberia 	
 	
	

Sierra Leone	

	

Method	

Adapted the generating function 
approach of Wallinga and Lipsitch 
(PRSB, 2007) 	
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Model fits to case data: Guinea 

27	
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Model fits to case data: Liberia 

28	
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Model fits to case data: Sierra Leone 

29	


0

0.1

0.2

0.3

β
I

 

 
TD = 2
TD = 4
TD = 6

0

0.5

1

1.5

β
D

0 0.5 1
1.5

1.75

2

2.25

R
0

ρD = R0(dead )/R0

50 100 150 200
0

1000

2000

3000

4000

5000

6000

Days, t

T
o
ta
l
ca

se
s

Sierra
Leone

50 100 150 200

101

102

103

Days, t
T
o
ta
l
ca

se
s

 
 
Page 29



Uncertainty in R0 for each country due to 
identifiability problem based on SEIRD fits 

30	


Country R0 (10% post-death 
transmission) 

R0 (40% post-death 
transmission) 
 

Guinea 1.22 1.24 

Liberia 2.20 2.33 

Sierra Leone 1.70 1.81 

Point of interest: The uncertainty in R0 arising from uncertainty 
in chains of transmission may approach or even exceed that 
from fitting a given dynamical model to case data.	

	

Note: many early fits of EVD case data had very narrow CIs.	
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SEIR-D Model 

31	
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Take-home messages:	

	

Multiple “scenarios”    ,    ,  and     all yield the same 
predicted epidemic growth rate.	

	

For a given growth rate, a larger proportion of post-death 
transmission implies a larger value of R0.	

	

Optimistically, the effect on R0 is modest, generally <10%, 
so long as post-death transmission is relatively short in 
duration compared to total period.	
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Strategies and Thoughts Related to Post-
Death Transmission of Ebola 

Contact-tracing of ~700 cases suggests that between 
10%-30% of transmissions are due to transmission via 
contact with dead individuals (see WHO-NEJM, SI).	

	

Post-death transmission implies a longer “effective” 
infectious period and, in turn, a modestly larger value of R0.	

	

But, improvements in burial practice may also lead to 
substantial reductions in R0 via:	

	

•  Reduction in post-death transmission rate	

•  Reduction in delay to burial	
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Benefits of Control of Post-death 
transmission (before/during burials) 
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growth rate.	
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Benefits of Control of Post-death 
transmission (before/during burials) 
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Summary of analysis of post-death 
transmission of Ebola 

Take-home message 1: 	

Estimates of R0 for Ebola that focus on transmission while alive 
will necessarily be under-estimates, when inferences are made 
given the same epidemic growth data.	

	

Take-home message 2: 	

Reduction of post-death transmission of Ebola may be substantial 
(e.g., one-half) of the necessary reduction in secondary 
transmission to stop epidemic spread (drop Re below 1).	

	

Take-home message 3:	

Uncertainty in the “age”-dependent hazard is a barrier to 
estimates of R0 given case data.  Hazard is unlikely to be constant! 	
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Part 1 of 2: Uncertainty in estimating R0 arising 
from uncertainty in the timing of infectious 
events, pre- and post-death. 	

	

Weitz & Dushoff (in press) Scientific Reports & arXiv:1411.3435 	


	

Part 2 of 2: Uncertainty in estimating R0 arising 
from the discrete transmission process. 	

	

Future topic? 	
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Email: jsweitz@gatech.edu	

Web: http://ecotheory.biology.gatech.edu	
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