Skip to main content

Notice: this Wiki will be going read only early in 2024 and edits will no longer be possible. Please see: https://gitlab.eclipse.org/eclipsefdn/helpdesk/-/wikis/Wiki-shutdown-plan for the plan.

Jump to: navigation, search

Difference between revisions of "ICE LWR Object Model"

(Fuel Assembly Model)
(Fuel Assembly Model)
Line 156: Line 156:
 
*''Fuel Rod properties'' - See below.
 
*''Fuel Rod properties'' - See below.
 
*''Instrument/Guide tube properties'' - See below.
 
*''Instrument/Guide tube properties'' - See below.
*''Spacer grid types and axial locations'' - distance from fuel assembly seat to the bottom of each spacer grid
+
*''Spacer grid types and axial locations'' - distance from fuel assembly seat to the bottom of each spacer grid<br>
 +
[[File:Find_the_missing_image_lattice-p-n-g.jpg]]<br>
 +
Reasonable values for these properties are provided below:
  
 +
*Size=17
 +
*Rod pitch = 1.26 cm
  
 +
*Rod and tube layout (octant symmetry):
 +
 +
    2              ! 17x17, octant symmetry
 +
    1 1            ! 0 = guide tube
 +
    1 1 1          ! 1 = fuel rod
 +
    0 1 1 0        ! 2 = instrument tube
 +
    1 1 1 1 1
 +
    1 1 1 1 1 0
 +
    0 1 1 0 1 1 1
 +
    1 1 1 1 1 1 1 1
 +
    1 1 1 1 1 1 1 1 1
 +
 +
*Assembly gap = calculated by (assembly_pitch - Size*Rod_pitch)/2 (i.e. half gap)
 +
*Fuel mass = 522 kg
 +
*Fuel rod X labels: A B C D E F G H I J K L M N O P Q
 +
*Fuel rod Y labels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 +
*Bottom Nozzle: SS, 6 cm high, 6 kgs
 +
*Top Nozzle: SS, 8.8 cm high, 6 kgs
 +
*Spacer grid axial locations:
 +
**End 13.884 cm
 +
**Intermediate 75.2 cm
 +
**Intermediate 127.4 cm
 +
**Intermediate 179.6 cm
 +
**Intermediate 231.8 cm
 +
**Intermediate 284.0 cm
 +
**Intermediate 336.2 cm
 +
**End 388.2 cm
  
 
=== Spacer Grid Model ===
 
=== Spacer Grid Model ===

Revision as of 13:02, 7 February 2015

In ICE, a Light Water Reactor (LWR) is modeled as a hierarchical tree data structure with the reactor core as the root node. The fuel rod assemblies, which form the core, are modeled as children of this root node. In a similar fashion, each assembly is itself a tree node with different types of rods as its children. Geometrically, the children of each node are arranged using a pre-specified lattice structure. All nodes are realized by objects in 3 dimensional space. The initial LWR model will focus solely on Pressurized Water Reactor (PWR) types.

Reactor Core Model

The reactor core model provides the radial arrangement of fuel assemblies and Rod Cluster Assemblies (RCAs) in the LWR reactor vessel. Additionally, it includes the description of materials outside of the core that may influence the neutronics or coolant conditions within the core. Lastly, it also includes descriptions of the control rod banks (or groupings) to be used for axial positioning control.

Objects of the reactor core include:

  • Fuel Assemblies - Nuclear fuel components, purchased from fuel vendors and shuffled around each fuel cycle. A typical fuel assembly is loaded fresh with either integral or discrete burnable absorbers, is operated for three fuel cycles in a different core location each cycle, and is discharged to the spent fuel pool once a substantial amount of its initial fissile material is depleted.
  • Rod Cluster Assemblies - Clusters of (typically neutron-absorbing) rods when are placed in and moved between fuel assemblies during refueling outages.
  • Incore Detectors - Used for power distribution monitoring inside of the reactor core. Typically, there are movable fission chambers that create electronic signals from neutron flux fields. Incore detectors have to be replaced as needed, when their sensitivity decreases substantially due to depletion of the fissile material.
  • Core plates - Structural components which support the weight and radial placement of all fuel assemblies, and prevent movement of the assemblies. The core plates are never changed for a particular nuclear reactor.
  • Baffle - A thin steel shroud for the reactor core, providing radial support for the fuel assemblies. There are two main types of core baffles or shroud. Only the first is handled here initially.
  • Core Barrel - A steel cylindrical shell which separates the reactor core (with coolant moving upwards) from the coolant moving in the downcomer region of the vessel.
  • Thermal shield - No description.
  • Vessel - The carbon steel container for all of the reactor core and coolant and providing a pressure boundary for the reactor coolant system in the containment building.

Find the missing image-reactorCore-j-p-g- .jpg

Properties of the reactor core include

  • Type (PWR)
  • Size - number of fuel assemblies across the core
  • Start and stop date - each fuel cycle has a documented start and stop date, typically taken when the power is significant enough to place the reactor on the power grid. This information is often used for calculating decay time for the nuclear fuel.
  • Cycle number - each fuel cycle is given a unique sequential number for tracking purposes. The initial cycle for a reactor is Cycle 1. Most reactors in the US today are up to the Cycle 10-20 range, with the oldest ones likely in the mid-twenties. A fuel cycle is typically 18-24 months.
  • Reactor rated thermal power - The (typically maximum) design heat generation in the reactor core
  • Reactor rated flow - the (typically maximum) design coolant flow rate for the reactor vessel

*Core bypass flow fraction - the fraction of coolant flow that does not contribute to significant heat removal from the fuel rods, including flow that goes around the core and flow that goes through instrument and guide tubes.

  • Number and location of assemblies (by ID) - the positioning of fuel assemblies in the core, also called the core loading pattern.
  • Number and location of RCAs (by ID) - the positioning of control rods, discrete burnable poisons, and thimble plug in the core fuel assemblies.
  • Number and location of incore instruments - the instrumented core locations, which are fixed for all cycles of a typical reactor
  • Assembly position labels (X/Y) - Labels by which to refer to fuel assemblies and components by core location
  • Control rod bank identifiers and locations - Character identifiers with group RCCAs and allow the operator to move several symmetric control rod clusters simulataneously
  • Fuel Assembly pitch - the distance between assemblies in the core, determined by the seating location in the core plates.
  • Core height - Distance between core plates that is filled by the fuel assemblies.
  • Baffle properties - Material, thickness, gap, and type.
  • Core Plate properties - Material, thickness (top and bottom), volume fraction of solid/coolant
  • Barrel properties - Inner and outer radius, thickness, and material.
  • Vessel properties - Inner and outer radius, thickness, and material.

Find the missing image assemblyGrid.-j-p-g .jpg

Representative values (defaults) are shown below:

  • Type = PWR
  • Size = 15
  • Start/Stop dates = optional
  • Cycle number = 1
  • Rated power = 3411 MW
  • Rated flow = 145 MLbs/hr
  • Bybass flow fraction = 7%
  • Locations of Assemblies (octant symmetry):

1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 2 1 2 1 2 3 1 3 1 3 3 3 3 3 3 3

  • Locations of RCAs (octant symmetry):

C 20P T C 24P C 20P T 20P C C 20P T 20P C 20P C 16P C 24P 12P C 24P C 16P C T 12P T 8P T

  • RCCA Bank Locations (quadrant symmetry):

D - A - D - C - - - - - - SB - - A - C - - - B - - - - A - SC - - D - - - D - SA - SB - SD - - - C - B - SA - - - - -

  • Detector Locations (full symmetry):
   - - 1 - - 1 -

1 - - 1 - 1 - - - - -

                           1 - 1 - 1 - 1
                           1 1 - - - - 1 - - - - - -
                   1 - - - 1 - 1 - 1 - -
                   1 - 1 - - 1 - 1 - - - - - 1 -
               1 - - 1 - - 1 - - 1 - -
               1 - 1 - 1 - 1 - - 1 - 1 1 1 -
       1 - - - - - - 1 - 1 - - - 1
                   1 - 1 - - - - 1 - - -
                   1 - - - 1 - - 1 - - 1 - - - 1
                   1 - - 1 - - 1 - -
       1 - 1 - - 1 - - - - - 1
       1 - - - 1 - - 1 - 1 -
       1 - - 1 - - -
  • Assembly x-labels = R P N M L K J H G F E D C B A
  • Assembly y-labels = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Fuel assembly pitch = 21.5 cm
  • Core Height = 406 cm
  • Baffle properties: SS, 1.125" thick, 0.064" gap
  • Upper Core Plate: SS, 7.6 cm, 50% SS/Coolant
  • Lower Core Plate: SS, 5.0 cm, 50% SS/Coolant
  • Barrel properties: None
  • Vessel Properties: None

Incore Instrument Model

The incore detector system at most PWRs functions by inserting an empty thimble tube into the instrument tube of selected assemblies. This tube is driven into the core from underneath the pressure vessel after the fuel is loaded. The incore detectors travel through the thimble tube and may be movable or fixed during operation. However, the dominant effect of the instruments for the majority of fuel and the majority of time is simply the presence of the SS thimble tube. In the future, this object can be used to provide data for the actual detector itself.
Find the missing image moveable detector-p-n-g .jpg
Properties of the incore instrument (thimble tube only) with default values:

  • identifier
  • material = stainless steel
  • height = assumed to be the same as the instrument tube
  • Inner radius of 0.258 cm and outer radius of 0.382 cm.
  • The instrument thimble is a boundary for the reactor system, containing air (vacuum)
  • The location of the instrument in each PWR lattice (octant symmetry):
   1
   0 0
   0 0 0
   0 0 0 0
   0 0 0 0 0
   0 0 0 0 0 0
   0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0

It is not clear yet whether the instrument location in the lattice should be provided by the instrument model or the fuel assembly model.

Fuel Assembly Model

Each reactor contains several hundred fuel assemblies arranged in a predetermined core loading pattern. Each fuel assembly provides placement of an array of fuel rods and instrument/guide tubes arranged in a square lattice. The fuel assembly structure is provided by the lower and upper nozzles (or end fittings) connected by the fuel assembly guide tubes. These nozzles provide the connections to the lower and upper core plates. The assembly also contains several spacer grids which provide radial and axial support for the fuel rods and in some cases improve the thermal performance of the fuel by increasing coolant flow mixing.

Find the missing image fuel assembly-p-n-g.jpg
Objects of the fuel assembly include

  • Fuel Rods
  • Guide tubes
  • Instrument tubes
  • Spacer grids
  • Nozzles

Properties of the fuel assembly include:

  • Identifier
  • Description
  • Size - the number of fuel rods across the assembly
  • Rod pitch - the distance between centers of adjacent fuel rods in the fuel lattice
  • Number of and location of fuel rods and instrument/guide tubes
  • Inter-Assembly gap (calculated) - half of the distance between adjacent assemblies
  • Total fuel mass - mass of fuel (typically UO2) in the entire assembly
  • Fuel rod labels (X/Y) - fuel rod coordinates for the fuel lattice
  • Nozzle properties - Top and bottom nozzle height, material, mass
  • Fuel Rod properties - See below.
  • Instrument/Guide tube properties - See below.
  • Spacer grid types and axial locations - distance from fuel assembly seat to the bottom of each spacer grid

Find the missing image lattice-p-n-g.jpg

Reasonable values for these properties are provided below:
  • Size=17
  • Rod pitch = 1.26 cm
  • Rod and tube layout (octant symmetry):
   2              ! 17x17, octant symmetry
   1 1            ! 0 = guide tube
   1 1 1          ! 1 = fuel rod
   0 1 1 0        ! 2 = instrument tube
   1 1 1 1 1
   1 1 1 1 1 0
   0 1 1 0 1 1 1
   1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1
  • Assembly gap = calculated by (assembly_pitch - Size*Rod_pitch)/2 (i.e. half gap)
  • Fuel mass = 522 kg
  • Fuel rod X labels: A B C D E F G H I J K L M N O P Q
  • Fuel rod Y labels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
  • Bottom Nozzle: SS, 6 cm high, 6 kgs
  • Top Nozzle: SS, 8.8 cm high, 6 kgs
  • Spacer grid axial locations:
    • End 13.884 cm
    • Intermediate 75.2 cm
    • Intermediate 127.4 cm
    • Intermediate 179.6 cm
    • Intermediate 231.8 cm
    • Intermediate 284.0 cm
    • Intermediate 336.2 cm
    • End 388.2 cm

Spacer Grid Model

Rod Cluster Assembly (RCA) Model

Rod Cluster Control Assemblies (RCC777As)

Reactor Rod Model

Fuel Rods

Burnable Absorber and Control Rods

Instrument and Guide Tubes

Time Evolution and State Points

Copyright © Eclipse Foundation, Inc. All Rights Reserved.