informatics mathematics

French public research institute (twitter.com/inria)

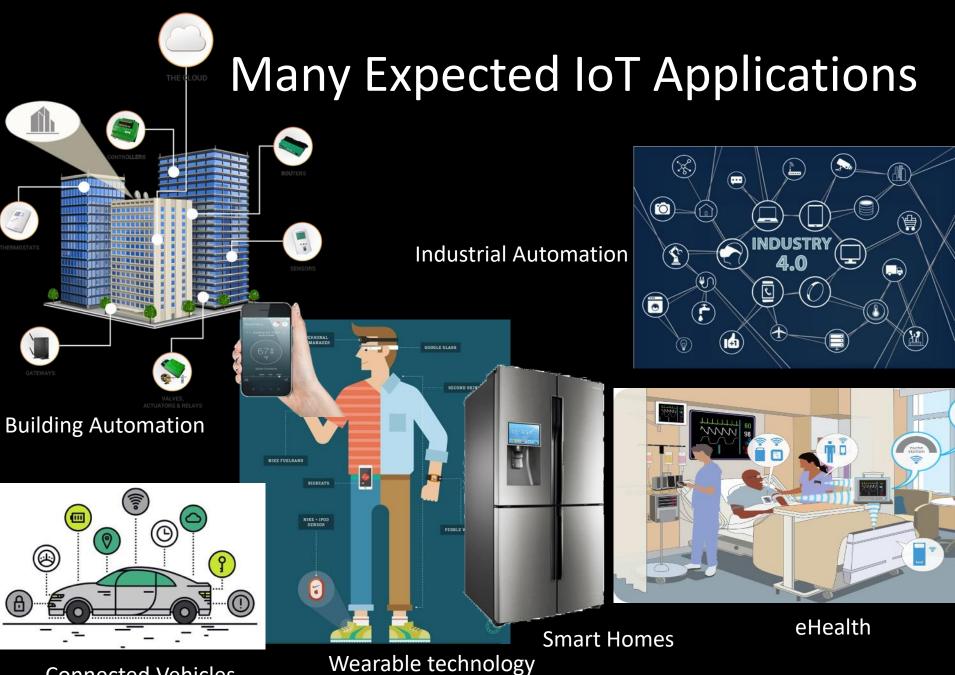
- Roughly 2700 employees in various sites in France
- Approx. 120 project-teams
- Around 200M€ annual budget
- Public/private financing

Inria focuses on computer science & control, including, but not limited to:

- Modeling, simulation, optimization of complex dynamic systems
- Security & reliability of computing systems
- Communication & ubiquitous computing (including IoT & CPS)
- Computational sciences
- Theoretical & empirical research approaches

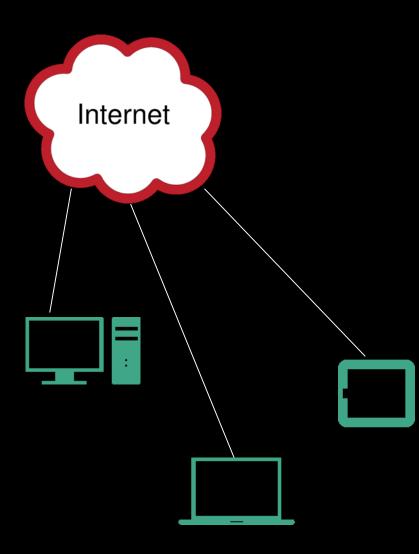
End-to-End Open Source IoT with Clot

www.riot-os.org

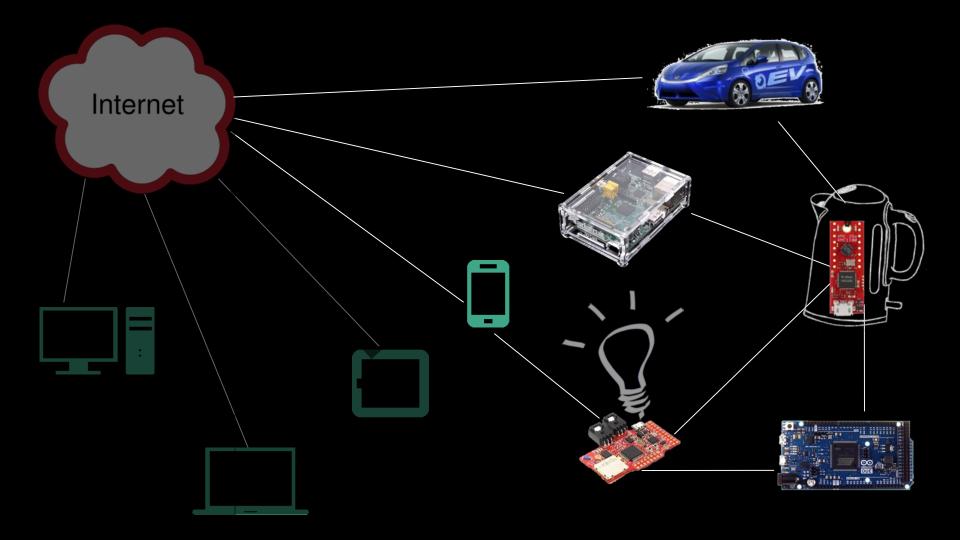

Emmanuel Baccelli & Alexandre Abadie

Innía

on behalf of the RIOT Community


Agenda

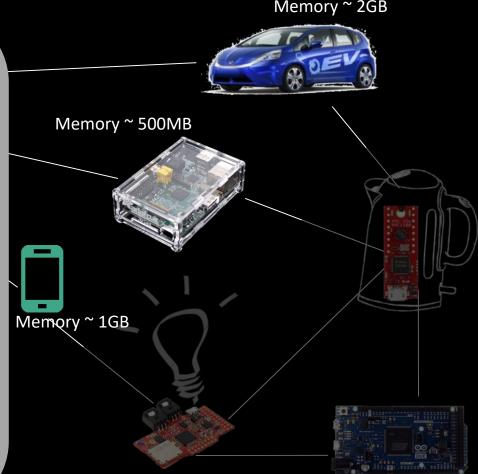
- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?



Connected Vehicles

Zoom: IoT Hardware

The Internet of Things (IoT)

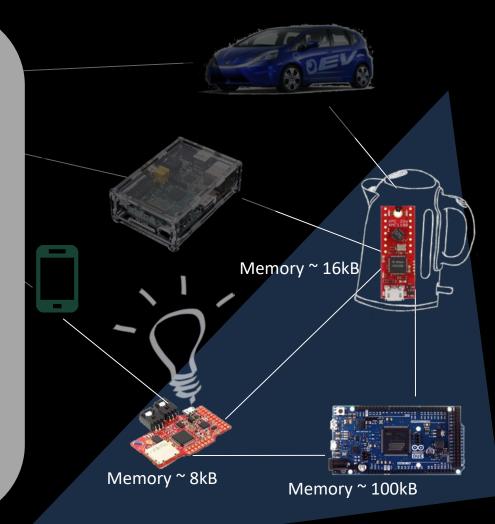


High-end IoT Hardware

Memory ~ 2GB

- single-board computers
 - ✓ RaspberryPi, connected cars, smartphones...
- resources similar to average Internet devices
 - memory, computation power, \checkmark network throughput...

Can run usual TCP/IP protocols Can run usual OS such as Linux



Low-end IoT Hardware

- Smaller & cheaper smart objects
- Low-power MCUs & radios

Energy: Milliwatt instead of Watt CPU: Megahertz instead of Gigahertz Memory: Kilobytes instead of Gigabytes

→ Cannot run TCP/IP protocols as is → Cannot run usual OS such as Linux

Zoom: the Internet

- How can the Internet work at such large scale?
- How does it allow quick-paced progress?

organic growth, made possible by combining:

- 1. Open standard protocol specifications
- 2. Open source development platforms
- 3. Extremely flexible algorithms

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?

Why a software platform for Low-end IoT devices?

• Linux, Android... bare-metal?

Memory ~ 32kB

- But as IoT software evolves...
 - more complex pieces, e.g. an IP network stack
 - evolution of application logic

… non-portable IoT software slows innovation

90% of IoT soft. should be hardware-independent

→ this is achievable with a good software platform (but not if you develop bare-metal)

Why Open Source?

✓ faster innovation by spreading IoT software dev. costs

✓ long-term IoT software robustness & security

trust, transparency & protection of IoT users' privacy

Iess garbage with less IoT device lock-down

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?

• How?

• What is RIOT?

How to achieve a good software platform?

• Experience (e.g. with Linux) points towards:

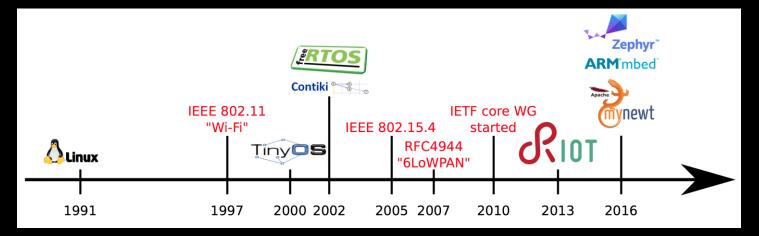
But technically, departure from Linux is needed

Main Challenges of an OS for IoT

Subj. to low-end IoT device resource constraints:

- ✓ Kernel performance
- ✓ System-level interoperability
- ✓ Network-level interoperability
- ✓ Trust

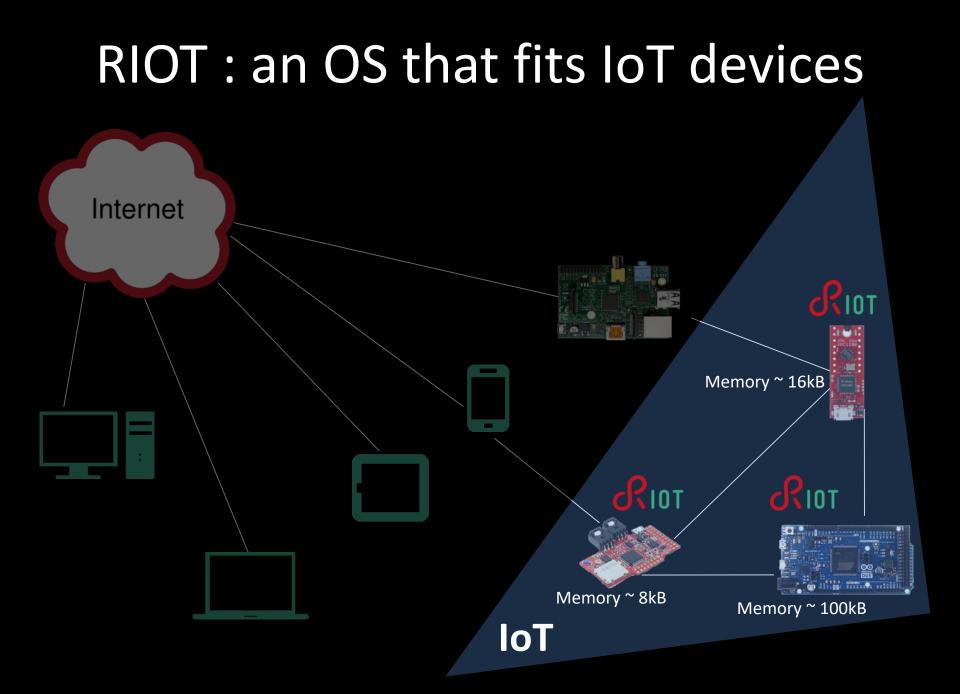
Software platform on low-end IoT devices?


- The good news:
 - no need for advanced GUI (simple shell is enough!)
 - no need for high throughput performance (kbit/s)
 - no need to support dozens of concurrent applications
- The bad news:
 - kBytes of memory!
 - typically no MMU!
 - extreme energy efficiency must be built-in!

Software platform on low-end IoT devices

- Contiki
- RIOT
- TinyOS
- mbedOS (ARM)

- Zephyr (Intel)
- LiteOS (Huawei)


... and closed-source alternatives

Reference: O. Hahm et al. "*Operating Systems for Low-End Devices in the Internet of Things: A survey*," IEEE Internet of Things Journal, 2016.

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?

RIOT : an OS that fits IoT devices

• RIOT is the combination of:

needed memory & energy efficiency to fit IoT devices

functionalities of a full-fledged operating system

- Advanced, consistent APIs across 32-bit, 16-bit, 8-bit hardware
- Full-featured, extensible network stacks
- Large pool of 3rd party software libraries

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Aspect 1: kernel performance
 - Aspect 2: system-level interoperability
 - Aspect 3: network-level interoperability
 - Aspect 4: trust

Challenge: Constrained Devices

ENERGY Milliwatt instead of Watt CPU Megahertz instead of Gigahertz Memory Kilobytes instead of Gigabytes

RIOT Kernel Performance

- Micro-kernel architecture (contrary to Linux)
 - Ultra-low memory footprint
 - Tickless scheduler → energy efficiency
 - Deterministic O(1) scheduler \rightarrow real-time
 - Low latency interrupt handler \rightarrow reactivity

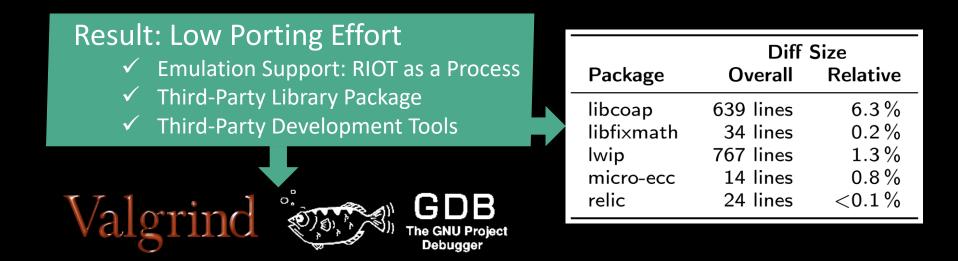
RIOT Kernel Performance

- Typical approach: event-driven, single stack
- RIOT approach: multi-threading
 - ✓ minimal Thread Control Block (TCB)
 - ✓ minimized stack usage
 - ✓ Ultra-efficient Inter-Process Communcation (IPC)
 - ✓ (Note: multithreading is optional)

Result (on 16-bit at 8MHz)

- ✓ Min. TCB: 8 bytes
- ✓ Min. Stack Size: 96 bytes
- ✓ Up to 16,000 Messages/s with IPC
 - (= 10,000 Packets/s for 802.15.4)

Agenda


- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Aspect 1: kernel performance
 - Aspect 2: system-level interoperability
 - Aspect 3: network-level interoperability
 - Aspect 4: trust

Challenge: Interoperability

- System-level interoperability
 - Hardware-independent IoT software
 - Usability of third-party software, well-known tools

RIOT System-level Interoperability

- Typical approach: specialized programming Exotic Paradigms & Programming Languages
- RIOT approach: standard programming ANSI C, no macro 'magic', standard multi-threading

RIOT : system-level Interoperability

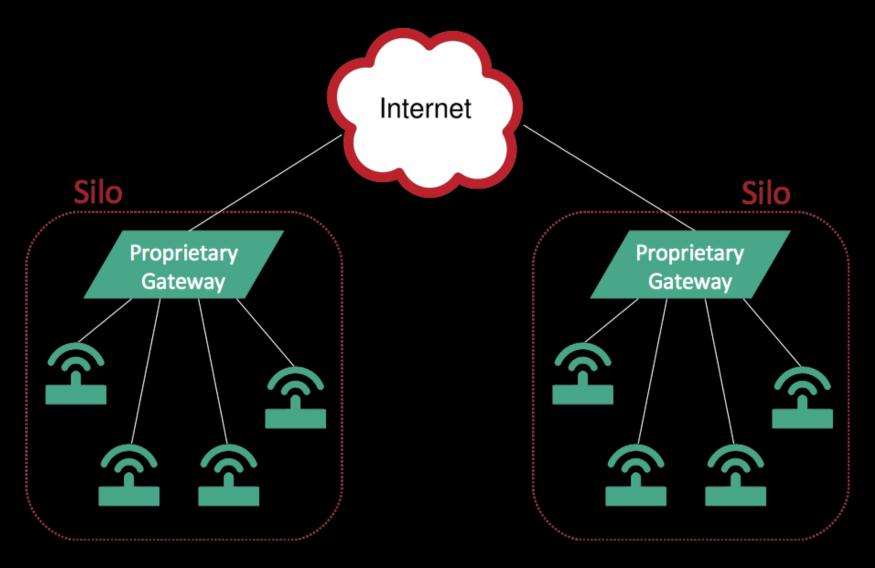
Consistent, powerful API on 8-bit, 16-bit, 32-bit
– 60+ IoT boards/devices supported, various radios...

	Hardware Specific				
	Platform	Drivers	Kernel	Net	Σ
ROM					
minimal	1,754	0	854	0	2,816
WSN default	4,684	6,183	2,233	4,105	37,002
gnrc_minimal	2 732	4106	2,140	12,298	27,524
gnrc	3,675	4138	2,700	30,985	74,752
RAM	\bigcirc				\sim
minimal	656	0	2,022	0	2,880
WSN default	681	0	2,022	2,066	6,344
gnrc_minimal	676	0	2,022	2,990	7,016
gnrc	676	0	2,022	15,815	20,828

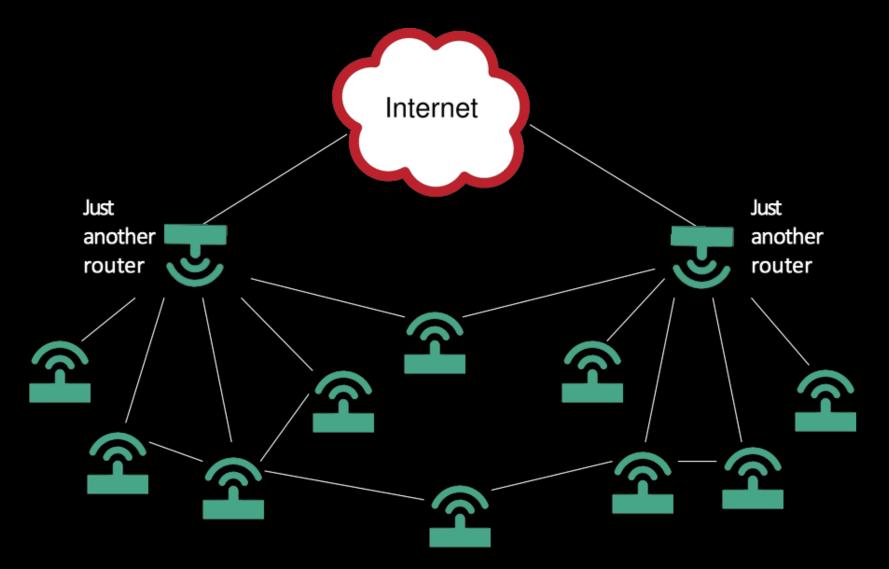
RAM/ROM usage on a Cortex-M IoT device

With a simple application over a IPv6/6LoWPAN stack in RIOT, 95% of the code is hardware-independent and/or reusable.

Agenda


- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Aspect 1: kernel performance
 - Aspect 2: system-level interoperability
 - Aspect 3: network-level interoperability
 - Aspect 4: trust

Challenge: Interoperability


- System-level interoperability
 - Hardware-independent IoT software
 - Usability of third-party software, well-known tools

- Network-level interoperability
 - End-to-end connectivity per default
 - Device-to-device connectivity

Network-level Challenge: The IoT today looks mostly like this

Network-level Challenge: The IoT we want looks more like that

The IoT we want is... the Internet!

Sinternet

Internet building blocks: Challenged by IoT...

... because of resource constrains on IoT devices

Memory, CPU, energy

... because of low-power communication characteristics

- Lossy / duty cycles
- Super-small frames
- Spontaneous wireless architecture

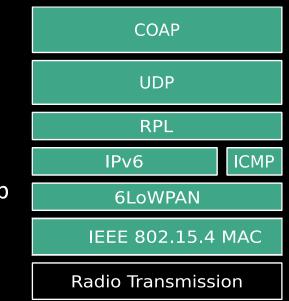
Adapted standard IoT protocols needed

Standard IoT protocols? On the way! Work in progress at IETF, IEEE, W3C, OMA...

New specs for link layer technologies

- Low-power radios, PLC, BACnet
- IEEE 802.15.4, Z-Wave, BLE, LoRa (and IEEE 802.11)
- More to come...

New specs for network layer protocols


- Fitting IoT requirements and interoperable with IP
- 6TiSCH, 6LoWPAN, RPL, OLSRv2, AODVv2
- More to come...

New specs for application layer protocols


- Fitting IoT requirements and interoperable with web
- CoAP, LwM2M, MQTT-SN, CBOR
- Security with DTLS, OSCOAP
- More to come...

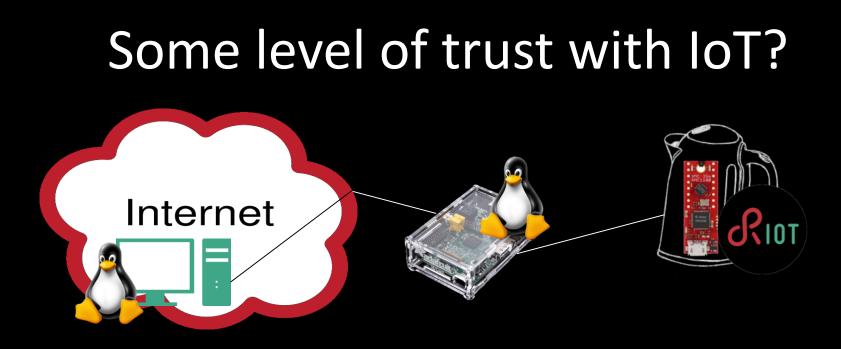
New network paradigms

- Content-centric networking for IoT
- More to come...

Network Stacks Available with RIOT

default (6LoWPAN) stack GNRC: in-house stack

✓ 3rd-party packages


- IwIP stack
- uIP (emb6) stack
- Thread (OpenThread) stack

...

- ✓ experimental stacks
 - CCN-lite
 - NDN-RIOT

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Aspect 1: kernel performance
 - Aspect 2: system-level interoperability
 - Aspect 3: network-level interoperability
 - Aspect 4: trust

Combining RIOT & Linux, IoT is possible with

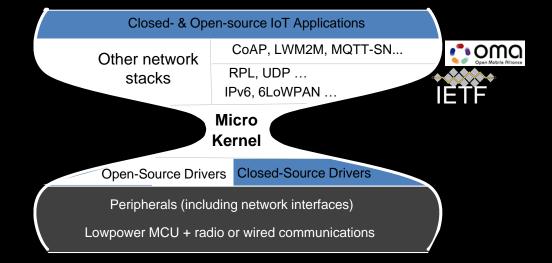
- ✓ End-to-end open source
- ✓ End-to-end secure & open communication standards
- ✓ From anywhere in the Internet all to the way to (lowend) IoT devices

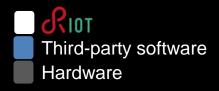
Some level of trust with IoT?

- Started in 2013 as a research project
 - "soft" copyleft license (LGPLv2.1)
 - Grassroots open source community

- 130+ code contributors world-wide
 - Makers, academics, SME, bigger industrial
 - RIOT Foundation (for-common-good organization)
 - RIOT Summit: gathering community yearly

RIOT in a nutshell

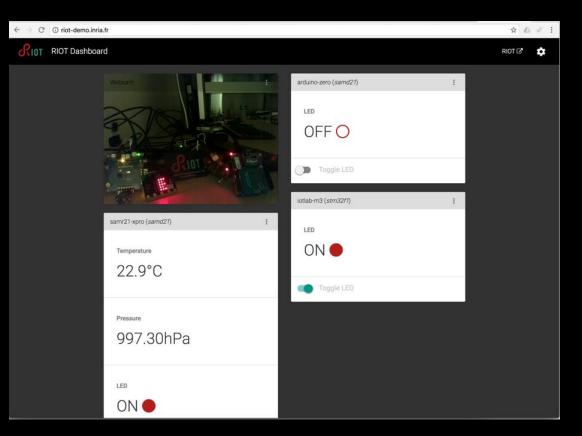

Free, open-source plaftorm for portable IoT software


RIOT offers a platform functionally equivalent to Linux, based on:

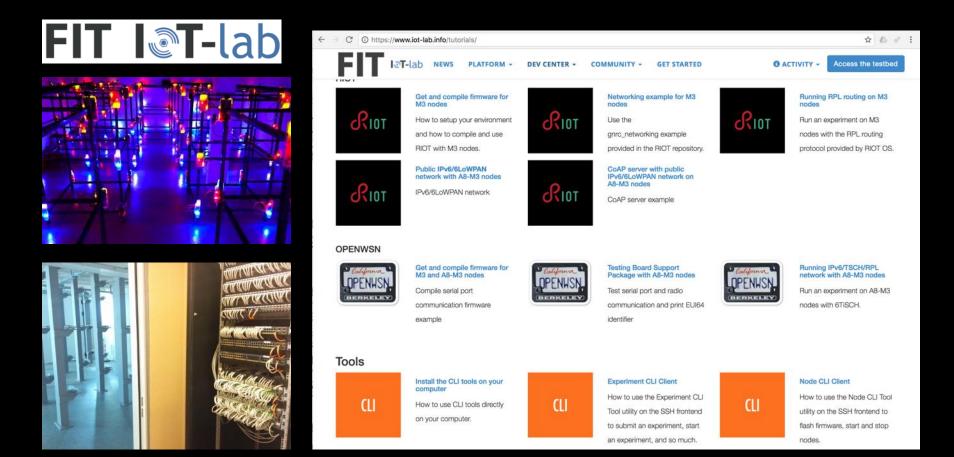
open-source,

open-access protocol specs,

community-driven dev.



RIOT in Action


http://riot-demo.inria.fr

- ✓ COTS low-end IoT hardware
- ✓ Web server dashboard
- ✓ COAP/IPv6/6LoWPAN
- ✓ End-to-end open source
- End-to-end open communication standards

RIOT in Action

RIOT supported on open access testbeds: https://www.iot-lab.info

Closing words

- We're seeing a lot of activity on OS for low-end IoT
- We're seeing huge progress in IoT on:
 - connectivity
 - interoperability
- Main IoT challenges ahead:
 - Large scale orchestration/management
 - Security (avoid IoT botnets armageddon?)
 - Privacy (reconciled with IoT and big data?)

Thanks!

News: https://twitter.com/RIOT_OS For cooperation questions: riot@riot-os.org For developer questions: devel@riot-os.org Contributing: https://github.com/RIOT-OS/RIOT Support & discussions on IRC: irc.freenode.org #riot-os CRIOT