
1

Obervation and Logging

22

What‘s going on

Agents move on the field (World)

At the end of a turn, the
scheduler informs observers to
do their work

Observers look at at the current
situation (snapshot)

They see what the world exposes
(WorldInterface) and what the
agents expose (AgentInterface)

They don‘t see, what‘s not
exposed

They don‘t see, how the agents
came to their final decisions

Issue Description

AgentInterface

WorldInterface

Snapshot

Observable Variable

Observer

33Behind the AgentInterface

AgentInterface

Model
1

Model
2

Model
3

R
e

a
d

W
rite

W
rite

Sync Observe

R
e

a
dinternal

variable

Sequence

An Agent consists of serveral Models,
each with access to the
AgentInterface

Within a simulation step, Models use
Signals for communication

At the end, writes are synchronized
Currently, the last write wins

Then, Observers to do their work

Unobservable Entities

Multiple writes to the AgentInterface
within the current turn

Signals…
(although more ore less public)

Internal variables

Evolution of internal variables

Internal Events (e.g. State Transition)

Signal Signal

Note, some Models do not have access to the AgentInterface

44Observation vs. Logging

Observer LoggerSCOPEpublic private

Notes

Currently only used to write runtime
application information into the log
files (aka CallbackInterface)

Control Flow
The models know what to write and
when to write it. Consumers can
access data as soon as it is written.

Notes

Good for generic use,
such as CollisionDetection

Currently, use runResult for data
exchange

Control Flow
The core is in control of what data is
available and when it is analyzed.

What‘s the goal of openPASS?

Generate meaningful data
for analysis.

Don‘t reinvent the wheel

Compatibilty to standard analytics

What are the real requirements?

55

THE BIGH MESH UP
Combine Observation and Logging in the ObservationInterface

What to do

Resuscitate ObservationInterface
- PCM Use isolated the Models from the ObservationNetwork

The ObservationInterface does not offer model specific methods anyhow
- No configurable assignement of observations to specific modules

The ModelLibrary can simply forward all ObservationModules

Extend ObservationInterface
- At least: Insert-Method, e.g.
Insert(time, agentId, topic, key, value)

Pro
Almost works out of the box

Con
Unclear, to which time-step reported value belongs (out of sync)

Definitly, only a workaround:
No future-proof architectural strategy and no seperation of concerns

Option 1
Minimally invasive

UnrestrictedModelInterface

WorldInterface

ParameterInterface

CallbackInterface

AgentInterface

ObservationInterface

66

PUBLISH/SUBSCRIBE PATTERN
Introducing PublishInterface

What to do

Replace ObservationInterface

Extend SimulationCore

Ideally, hide logic from Model
(see next Slides)

Pro
Seperated concerns

Everyone can publish private data

Decoupled producer and consumer

Con
Decoupled producer and consumer ;)

Definitly, only a workaround:
No future-proof architectural strategy and no seperation of concerns

SimulationCore

Option 2
Update UnrestrictedModelInterface

Broker

Logger

Publish

Model

Subscribe

Producer Consumer

UnrestrictedModelInterface

WorldInterface

ParameterInterface

CallbackInterface

AgentInterface

PublisherInterface

77
Example
Pseudo Code (Auto-Publishing)

template<typename T>

class Observable

{

std::list<T> _values;

public:

explicit Observable(T initValue) {

set(initValue);

}

const T get() const {

return _values.back();

}

void set(T value) {

_values.push_back(value);

}

const std::list<T>& values() const

{

return _values;

}

…

…

Observable& operator=(T value) {

set(value);

return *this;

}

operator T() const {

return get();

}

bool operator==(const T& lhs) {

return lhs == get();

}

bool operator==(const Observable&

lhs)

{

return lhs.get() == get();

}

};

int main()

{

Observable x{0.0}, y{0.0};

// assign to local variable

double a = x;

// store update (publish)

x = 12.0;

if (x == 12.0) {

// compare to base type

}

if (x == y) {

// compare to observable

}

for (auto value : x.values()) {

// loop history

}

}

Managed
by Broker

payload
<double>

Might be a request
to the Broker

88

Apache Kafka

Publish and subscribe to streams of records, similar to a message queue

Store streams of records in a fault-tolerant durable way

Process streams of records as they occur

MQTT

Easy information organization through hierarchical topics,
e.g Deathstar/Laser/Temperature or Deathstar/Laser/*

OASIS accepted ISO Standard

Quality of Service implementation

Option 3
The bigger picture

What we should aim for

Publish/Subscribe System
(could also replace Signals)

A lightweight interface or
decorator for publishing

A new ModelInterface

Independent logger (consumers)

Compatibilty to persisting
(streaming) systems, opening
support for consumers with
different processing speed
(hot/cold paths)

Published Data

Hot Path: e.g. Stop because of collision

Cold Path:
e.g. Compare to other runs

← Simulation end

