
Deploying Successful Enterprise Tools

Joep Rottinghuis

Productivity Tools Architect, eBay Inc.

August 27, 2009

Eclipse Day at GooglePlex 2009

2

Abstract

For a tool to be successful in an enterprise, it takes much more than
writing a great Eclipse plug-in and tossing it out there.

Most tool developers focus on the early phases of PDLC such as UI
design, coding functionality and performance. These are necessary, but
not sufficient.

This presentation will cover various other aspects that drive and
sustain adoption:

testing

deployment mechanisms

usage tracking

maintenance

documentation

support and user education

Joep will discuss the challenges and solutions found at eBay to make
Eclipse based tools successful in a large, fast-paced organization.

3

Agenda

1. testing

2. deployment mechanisms

3. usage tracking

4. maintenance

5. documentation

6. support and user education

4

Testing

UI testing is challenging

Avoid chaining use cases even with UI testing tool.

De-couple your UI from the Model/Controller

Beware of unexpected dependencies on Eclipse bundles

Use your tool for your own development

Use beta-testers

Hard to control

5

Deployment Mechanisms

1. Manual

Fixed issues re-appear

2. Eclipse Update Site

Older mechanism

3. P2 Repository

Good for latest & greatest Eclipse plug-ins

Need to control & notify user when to check for new version

4. JNLP (RCP) App

Good for latest & greatest

Great for “non-Eclipse” users

5. Per workspace

6

Deployment Mechanisms

4. JNLP (RCP) App pitfalls:

Signing of all jars (including RCP jars) is required

Pack200 re-arranges jar contents which invalidates jarsigner hash:
repack, sign, pack

Browser JRE plug-in version mismatch

32-bit SWT libraries on Windows

IE Browser cache full

Java WS download pop-up in headless mode on Unix
javaws –import –silent <url>

javaws -Xnosplash <url>

Compatibility key

Classloader implementation of OSGi bundle visibility bites JDK logging

Eclipse <3.0 plug-ins in RCP

7

Deployment Mechanisms

1. Manual

2. Update site

3. P2 Repository

4. JNLP (RCP) App

5. Per workspace

Plug-in coupled with code: Code generation, tools use and create
libraries.

Requirement to roll forward and backwards

Requirement to have varying versions in different workspaces

Current solution: auto-config. Next-gen: workspace materialization

8

Per Workspace plug-ins

Pros:

1. Plug-in code can keep pace with workspace version

2. When debugging code, the plug-in matches the source code

3. API’s of underlying libraries can evolve (even break

backwards compatibility)

4. Tool (Plug-in) can be used to determine which plug-ins need
to be installed

9

Per Workspace plugins

Cons:

1. OSGi bundle (bundle symbolic name) can be part of either

Eclipse installation or workspace, but not both.

2. File->Switch workspace does not work anymore

3. Requires modification of Eclipse startup

4. Eclipse 3.4 / 3.5 P2 compatibility ok per documentation

(being tested)

5. Linux / Mac compatibility TBD

10

Eclipse startup hack hook

Logical steps in use case:

a) Start Eclipse as usual

b) Have your own “Config” plug-in

c) Identify required per-workspace features

d) Identify versions of features/plug-ins/jars needed

e) Source the feature binaries

f) Prepare install site in current workspace

g) Restart Eclipse using additional startup parameters

11

Eclipse startup hack hook 2

To get per-workspace plug-ins requires the following
changes to Eclipse:

Modify how Eclipse starts

Eclipse 3.2.x replace startup.jar

Eclipse 3.3.x replace org.eclipse.equinox.launcher

Modify main class
Rename run method to basicRun

Add a new run method to add your own startup parameters passed to
Eclipse.exe

Add runtime option -configuration

12

Eclipse startup hack hook 3

org.eclipse.equinox.launcher.Main

public class Main {

...

public int run(String[] args) {

int result = 0;

try { // Manipulate input arguments to add

// workspace specific settings

args = EbayStartupHook.beforeMain(args);

if (args == EbayStartupHook.QUIT) {

return 0;

}

// EBAY STARTUP HOOK END

basicRun(args);

...

13

Eclipse startup hack hook 4

com.ebay.tools.startup.EbayStartupHook

public class EbayStartupHook{

...

public static String[] beforeMain(String[] input) {

...

// Given arguments -data {workspace},

// add -configuration {workspace}/ebay-local-configuration.

...

14

Eclipse startup hack hook 5

Configuration (-configuration) {osgi.configuration.area} [@none,
@noDefault, @user.home, @user.dir, filepath, url]

Configuration locations contain files which identify and manage the (sub)set of an

install to run. As such, there may be many configurations per install. Installs may

come with a default configuration area but typical startup scenarios involve the

runtime attempting to find a more writable configuration location.

Instance (-data) {osgi.instance.area} [@none, @noDefault,
@user.home, @user.dir, filepath, url]

Instance locations contain user-defined data artifacts. For example, the

Resources plug-in uses the instance area as the workspace location and thus the

default home for projects. Other plugins are free to write whatever files they like
in this location.

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.
doc.isv/reference/misc/runtime-options.html

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.platform.doc.
isv/reference/misc/runtime-options.html

15

Usage tracking

Expect the unexpected; anecdotes from the “the real
world”:

Weather balloons strapped to lawn-chair

Solution: fine & disclaimers

Storing coins in an ashtray

Solution: alternate storage and supervision

…

16

Usage tracking

Unexpected usage “in the software world”:

Web Service query meant to retrieve daily changes called
in a 1 second polling loop.

Solution: creating a call-back mechanism

Automated build used to create & check-in thousands of
jars for a release used by developer on daily basis causing
capacity issues

Solution: authorization/authentication & user education

Infrequent use of little known features; re-creation of
same functionality in multiple tools

Solution: tracking, user education, dedicated tools team

17

Usage tracking

Knowing who is using what/when/how is important!

With software tracking is relatively easily

Light-weight low-overhead trumps ultimate accuracy

Combine usage, performance, coarse grained logging

Central: Log Events (errors, exceptions, usage), Log Transaction,
Heartbeat

Local: verbose outputs too expensive to send over the network or not
interesting until a specific bug is getting researched with the user.

Track centrally if you can, locally where you must

18

Usage tracking

Combined approach allows you to answer many important
questions:

Who uses what functionality, how often and when?

Why should management spend resources on tooling?

Where do you need to more user training / education?

What is the performance?

What errors occur in the users’ environment?

Which versions of the plug-ins / tools are used?

When a user does file a bug, what exactly happened?

19

Maintenance

Maintenance is required to adapt to changing
environment

Stale tools get abandoned or waste users’ time

Release effort depends on deployment options chosen

Separate production bug fixes from development stream

Usage tracking / central logging lets you make informed
decisions about bug fixes and new feature development

Don’t just give users what they ask for, figure out what they really

need

20

Documentation

Proper documentation is first line of defense in battle to
keep your users informed of functionality

Keep it up to date

Much outdated documentation can be worse than less

documentation which is actually accurate

Use the various mechanisms to provide documentation:

Micro-help / mouse-over bubbles

Context sensitive help

Eclipse Help shipped & and standalone on web-site

Do not forget release notes

21

Support and user education

Support and user education is critical. Use every option
available.

Self-help:

FAQ

Forum

Wiki - beware of stale information

(Recorded) training brown-bag training session

(Recorded) how-to’s

22

Support and user education

See every interaction with user as an opportunity

Follow up

Personal / boots on the ground approach

Responsiveness to “squeaky wheel”

Turnaround time of bugs and (small) enhancements

Perception is reality

Public tracking of new feature requests

23

Conclusion

If you want your tools to be successful in the enterprise, it
takes much more effort than coding a few cool Eclipse
plug-ins.

This requires attention to many details of various other
aspects that drive adoption as discussed in this
presentation.

24

Questions

Deploying Successful Enterprise Tools

Joep Rottinghuis, eBay

