
Understanding Plug-in Test Suites
from an Integration Perspective

Michaela Greiler, Arie van Deursen

Software Engineering Research Group

Delft University of Technology

Understanding Plug-in Test Suites

Need more Information?

Which Information?

Code Dependencies

Extension Relations

which plug-ins are using each other

which plug-ins are extending each other

Service Relations
which plug-ins are using services each other

Interviewed 25 Eclipse practitioners

Understanding
test cases

Understanding
test suites

Interviewed 25 Eclipse practitioners

Understanding
test cases

Coding standards, naming conventions.

“Tests are also like other parts of code. Sometimes people give bad
names to their methods and variables. Then it is hard to understand.”

Explanation and Motivation.

Interviewed 25 Eclipse practitioners

Understanding
test suites

“What one specific test does, that’s quite
easy to understand. What’s difficult is to see
where the blank spots on the map are.”

Interviewed 25 Eclipse practitioners

Understanding
test suites

Challenges keeping an Overview:

“It is difficult. You have to read it all. If you skip
one test, you do not know one part of the system.”

Test Organization and Structure.

Nested Test Suites.

Interviewed 25 Eclipse practitioners

Understanding
test suites

“We realized: either we work on a particular point, and
we run only one test case, or we run all of them.

We worry very often about not being able to run the test
suite in a more fine-grained way..”

How are the plug-in
extensions and services

tested?

Which plug-ins are
tested by which test-

component?

How are the plug-ins
extending each other?

Which extensions are
used during the tests?

Manual Inspection!

Look at…

…code

… extension relations

Only Static

Understanding Plug-in Test Suites
from an Integration Perspective

Extension
Usage View

Extension
Initialization

View

Plug-in
Modularization

View

5 Architectural View

Plug-in A
uses

Plug-in B

Plug-in A
loads

extension e
of Plug-in B

Plug-in Level Extension Level

Plug-in A
invokes

method m of
extension e
in plug-in B

Method Level

Test-Suite
Modularization

View

Service
Usage View

Test Case Level

Plug-in A
invokes

method m of
service s

in plug-in B

Method Level

Plug-in A
is tested by
test case t

of Plug-in B

Ingredients: Data Behind

Instrumentation

Static Data & Dynamic Trace Data

Fact Extraction

plugin.xml & schema
manifest
class files

Test suite
class files

Facts Traces

Reconstruction

VIEWS

Recipe: Reconstructing The Views

InstrumentationFact Extraction

Facts Traces

Reconstruction

Extension Method Set: Heuristic
(all methods of an extension)

Inspect the Trace File

Extension Usage View
which “extension methods” are

invoked

Recipe: Reconstructing the Extension Usage View

STATIC: plug-in.xml, schema, .class DYNAMIC: Method Calls

ETSE: Eclipse Test Suite Explorer

Empirical Evaluation

Case Study Set-Up

27 plug-ins

11 test-components

2 test suites

200,000 LOCs

30,000 LOCs tests

5 main plug-ins

2 test components

4 test suites

100,000 LOCs

14,000 lines tests

3 main plug-ins

1 test component

2 test suites

8,500 LOCs

3,400 lines tests

Connector

ETSE: Eclipse Test Suite Explorer

Which plug-ins are
tested by which test-

component?

Static

Dynamic

How are the plug-ins
extending each other?

How are the plug-in
extension-relations tested?

System Level

Dynamic & Static

How are the plug-ins
extending each other?

How are the plug-in
extension-relations tested?

Plug-in Level
Dynamic & Static

Which extensions are
used during the tests?

When and how have
the extensions been

used?

ETSE: Eclipse Test Suite Explorer

Update site:
http://swerl.tudelft.nl/etse/ETSE_UpdateSite/site.xml

Want to use ETSE in your project?

Contactus!

arie.vandeursen@tudelft.nl

m.s.greiler@tudelft.nl

