
OCL2

 Eclipse ECESIS Project!1

A presentation of OCL 2

Object Constraint Language

Fraunhofer FOKUS

OCL2

 Eclipse ECESIS Project!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

OCL2

 Eclipse ECESIS Project!3

Overview

• Motivation

• Introduction and short History

• Applying OCL
• Relation to the UML Metamodel
• Basic types
•Objects und their Properties
• Collections
•Messages

• Tools

OCL2

 Eclipse ECESIS Project!4

Motivation

• Graphic specification languages such as UML can
describe often only partial aspects of a system

• Constraints are often (if at all) described as marginal
notes in natural language
• almost always ambiguous
• imprecise
• not automatically realizable/checkable

• Formal Languages are better suitable
Employee

age : Integer
Please no underaged employees!

OCL2

 Eclipse ECESIS Project!5

Motivation 2

• Traditional formal languages (e.g. Z) require good
mathematical understanding from users
•Applying and distribution only in academic world, not in industry
• hard to learn, to complex in application
• Problem: „large“ systems

• The Object Constraint Language (OCL) has been
developed to achieve the following goals:
• formal, precise, unambiguous
• applicable for a large number of users (business or system

modeler, programmers)
• Specification language
• not a Programming language
• tool support Employee

age : Integer

context Employee inv:
self.age > 18

OCL2

 Eclipse ECESIS Project!6

History

• Developed in 1995 from IBM‘s Financial Division
• original goal: business modelling
• Insurance department
• derived from S. Cook‘s „Syntropy“

• Belongs to the UML Standard since Version 1.1
(1997)

• OCL 2.0 Final Adopted Specification (ptc/
03-10-14) October 2003

• Aligned with UML 2.0 and MOF 2.0

OCL2

 Eclipse ECESIS Project!7

Language features

• Specification language without side effects
• Evaluation of an OCL expression returns a value – the model

remains unchanged! (even though an OCL expression is used to
specify a state change (e.g., post-condition) the state of the
system will never change)
• OCL is not a programming language (no program logic or flow

control, no invocation of processes or activation of non-query
operations, only queries)
• OCL is typed language, each OCL expression has a type. It is not

allowed to compare Strings and Integers
• Each Classifier defined in model represents a distinct OCL type
• Includes a set of predefined types
• The evaluation of an OCL expression is instantaneous, the states

of objects in a model cannot change during evaluation

OCL2

 Eclipse ECESIS Project!8

Where to use OCL

• Constraints specification for model elements in UML
models
• Invariants
• Pre- and post conditions (Operations and Methods)
• Guards
• Specification of target (sets) for messages and actions
• initial or derived values for attributes & association ends

• As „query language“

• Constraints specification in metamodels (MOF) – MOF
models are also models

OCL2

 Eclipse ECESIS Project!9

Relation to the UML Model

• Each OCL expression is related to an instance of a
model element

• Context declaration is used to determine the
model element
• In a diagram: dashed line to the element, which the defined

OCL constraint refer to

• self refers to the contextual instance

Employee
age : Integer

context Employee
inv: self.age > 18

OCL2

 Eclipse ECESIS Project!10

Relation to the UML Model 2

• Constraint is an element of the UML2 metamodel
• part of the Kernel-Package
• Describes additional semantic of one or more model elements
• Language is not predefined: natural language, OCL, Java etc.

• The „Owner“ of a constraint determines the time of the constraint
evaluation (e.g.: Owner: Operation, time of the evaluation : pre or post)
• Constrained Elements: set of elements referenced by the Constraint.

PackageableElement

Namespace

ValueSpecification

Constraint

*0..1 *

+/co ntext

0..1 {un io n}

0..1 *

+namespace

0..1 {subsets context}

+owne dRul e

*{su bse ts o wnedMe mb er} 0..1 10..1

+sp eci fi ca ti on

1{su bse ts o wnedElemen t}

Element

*

+constrainedElement

*{ordered}

OCL2

 Eclipse ECESIS Project!11

Relation to the UML Model 3

• Value Specification
• In case of OCL: Expression with Language == „OCL“

Expression

body : String
langua ge : Stri ng

[0..1]
[0. .1]

LiteralSpecification

LiteralBoolean

value : Boolean

Literal Integer

value : Integer

LiteralString

val ue : St ring

LiteralUnl imitedNa tural

value : UnlimitedNatural
Literal Nul l

ValueSpecification

Instan ceVa lu e
InstanceSpecification

1

+instance

1

OCL2

 Eclipse ECESIS Project!12

Relation to the UML Model 4

• OCL notation in UML model
• constraint ::= ‘{‘ [<name> ‘:’] <expression>’ }’
•may follow the element directly (e.g. Attribute)
•may be placed near the symbol for the element, preferably near

the name, if any (e.g. Association End)
•may be shown as a dashed line between two elements (if a

Constraint applies to two elements) labeled by the constraint string
(in braces)
•may be placed in a note symbol

OCL2

 Eclipse ECESIS Project!13

Stereotypes (Constraint types)

• inv invariant: constraint must be true
• for all instances of constrained type at any time
• Constraint is always of the type Boolean

context Employee  
inv: self.age > 18

context Employee  
inv age_18: self.age >18

context c : Employee  
inv: c.age > 18

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)

OCL2

 Eclipse ECESIS Project!14

Stereotypes (Constraint types) 2

• pre precondition: constraint must be true, before
execution of an Operation

• post postcondition: constraint must be true, after
execution of an Operation

• self refers to the object on which the operation was called
• return designates the result of the operation (if available)
• The names of the parameters can also be used

context Employee::raiseWage(newWage:Integer)
 pre: newWage > self.wage
 post my_post: wage = newWage

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)

OCL2

 Eclipse ECESIS Project!15

Stereotypes (Constraint types) 3

• body specifies the result of a query operation
• The expression has to be conformed to the result type of the operation

context Employee::getWage() : Integer
body: self.wage

• init specifies the initial value of an attribute or
association end

• Conformity to the result type + Mulitiplicity
context Employee::wage : Integer
init: wage = 900

• derive specifies the derivation rule of an attribute or
association end
derive : wage = self.age * 50

• def enables reuse of variables/operations over multiple
OCL expressions
context Employee:
def: annualIncome : Integer = 12 * wage

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)
getWage() : Integer

OCL2

 Eclipse ECESIS Project!16

OCL Metamodel

• OCL 2.0 has (of course ;-)) MOF Metamodel

• The Metamodel reflects OCL‘s abstract syntax

• Metamodel for OCL Types
• OCL is a typed language
• each OCL expression has a type
•OCL defines additional to UML types:

• CollectionType, TupleType, OclMessageType,….

• Metamodel for OCL Expressions
• defines the possible OCL expressions

OCL2

 Eclipse ECESIS Project!17

OCL Types Metamodel

SetType SequenceType BagType

DataType
(f rom Core)

TupleType Primitive
(f rom Core)

CollectionType

Classifier
(from Core)

1

0..4

+elementType
1

+collectionTypes
0..4

StructuralFeature
(f rom Core) 1

0..n +type
1

0..n

VoidTypeOclModelElementType

Signal
(f rom Common Behav ior)

Operation
(f rom C ore)

OclMessa
geType

0..1

+referredSignal

0..1

0..1 +referredOperation0..1

OCL2

 Eclipse ECESIS Project!18

OCL Types

• All Classifier within a UML model, to which OCL
expression belongs, are types
•OCLModelElementType
• e.g. for oclIsKindOf

• Collection Types
•Are not defined in the Metamodel, exist only implicitly, if they

are used (otherwise, infinite since recursive application possible)
• CollectionType is abstract, has an element type, which can be

CollectionType again
• Set: contains elements without duplicates, no ordering
• Bag: may contain elements with duplicates, no ordering
• Sequence: ordered, with duplicates
•OrderedSet: ordered, without duplicates

OCL2

 Eclipse ECESIS Project!19

OCL Types 2

• TupleType
• Is a Struct (combination of different types into a single

aggregate type)
•Has Attribute with a name and a type

• OCLMessageType
• is used for an access to messages of an operation or signal
• Statements about the possible sending/receiving of signal/

operations

• VoidType
•Has only an instance oclUndefined
• Is conform to all types

OCL2

 Eclipse ECESIS Project!20

OCL Expression Metamodel – Basis elements

ModelElement
name : String

LiteralExp

ModelPropertyCallExp

IteratorExp

OclMessageExpIfExp

IterateExp

VariableExpPropertyCallExp

Classifier
(from Core)

VariableDeclaration
varName : String

1

0..1

+result 1

+baseExp

0..1

1

0..n

+referredVariable1

0..n

1

+type

1

OclExpression

0..1

0..1

+source
0..1

+appliedProperty 0..1

0..1

0..1

+initExpression
0..1

+initalizedVariable

0..1

1

+type

1

LoopExp

1..n

0..1

+iterators 1..n

+loopExpr
0..1

1

0..1

+body
1

0..1

OCL2

 Eclipse ECESIS Project!21

Basic constructs

• Let, If-then-else
let annualIncome : Integer = wage * 12 in
if self.isUnemployed then
 annualIncome < 5000
else
 annualIncome >= 5000
Endif

• Standard Library
• Similar to C++, Java, mostly template-based defined
• Primitive Types:
• Integer, Real, Boolean, String
• Operations: +, -, min(), max(), concat()...

• Collection Types, described as Parameterized Classifier
(Template):
• Set<T>, OrderedSet<T>, Bag<T>, Sequence<T>
• Operations: size(), includes(), append()...

OCL2

 Eclipse ECESIS Project!22

Accessing objects and their properties

ModelPropertyCallExp

Attribute
(from Core)

AttributeCallExp
1

0..n +referredAttribute
1

0..n

AssociationClass
(from Core)AssociationClassCallExp

10..n
+referredAssociationClass

10..n

Operation
(from Core)OperationCallExp 1

0..n

+referredOperation

1
0..n

OclExpression

0..n

0..1
+arguments

0..n{ordered}

+parentOperation0..1

AssociationEndCallExp

NavigationCallExp

0..n

0..1

+qualifiers
0..n{ordered}

0..1

AssociationEnd
(from Core)0..n 10..n

+referredAssociationEnd
1

1+navigationSource 1

OCL2

 Eclipse ECESIS Project!23

Accessing objects and their properties (Features)

• Attribute:
self.age > 18

• Operations:
• may no have side effects (only when? allowed)
• isQuery = true

self.getWage() > 1000

• Association ends:
• allow navigation to other objects
• result in Set, when multiplicity > 1 und unique
• result in OrderedSet, when Multiplicity > 1 and {ordered,unique}
• ...
self.employer->size() > 0

• Accessing enumerations with ´::´
Gender::male

• Accessing overridden properties with
oclAsType
context B inv:  

self.oclAsType(A).p1 -- accesses the p1 property  
 -- defined in A

OCL2

 Eclipse ECESIS Project!24

Collections Operations (Iterations)

• Collections result from Navigation
• OCL allows elements of collections to be collections

themselves
• Multiplicity of navigated Features determines the Collection

type
• Collection Operations: different constructs for enabling a

way of projecting new collections from existing ones
• Collection Operations do not change the model

• Defined Operations
• Select/Reject
• Collect
• ForAll
• Exists
• Iterate

OCL2

 Eclipse ECESIS Project!25

Collections Operations (Iterations) 2

• select and reject specify a subset of a collection
• (result: Collection)
context Company inv:
 self.employees->select(age < 18) -> isEmpty()

• Expression will be applied to all collection elements, context is
then the related element
• Complete syntax:
collection->select(v : Type | boolean-expression-
with-v)

collection->select(v | boolean-expression-with-v)
collection->select(boolean-expression)

OCL2

 Eclipse ECESIS Project!26

Collections Operations (Iterations) 3

• collect specify a collection which is derived from some
other collection, but which contains different objects
from the original collection (result: Bag)
self.employees->collect(age)
-- returns a Set of Integer
• Complete syntax
collection->collect(v : Type | expression-with-v)
collection->collect(v | expression-with-v)
collection->collect(expression)
• Shorthand notation
self.employees.age
• Applying a property to a collection of elements will automatically be

interpreted as a collect over the members of the collection with the
specified property

OCL2

 Eclipse ECESIS Project!27

Collections Operations (Iterations) 4

• forAll specifies expression, which must hold for all objects in
a collection (result: Boolean)
self.employees->forAll(age > 18)

collection->forAll(v : Type | boolean-expression-with-
v)

collection->forAll(v | boolean-expression-with-v)
collection->forAll(boolean-expression)

• Can be nested
context Company inv:
self.employee->forAll (e1 |  

self.employee->forAll (e2 |
e1 <> e2 implies e1.pnum <> e2.pnum))

• exists returns true if the expression is true for at least
one element of collection (result: Boolean)

OCL2

 Eclipse ECESIS Project!28

Collections Operations (Iterations) 5

• iterate is the general form of the Iteration, all previous
operations can be described in terms of iterate
collection->iterate(elem : Type; acc : Type =

<expression> | expression-with-elem-and-acc)

• elem is the iterator, variable acc is the accumulator, which gets an
initial value <expression>.
• Example:
collection->collect(x : T | x.property)
-- is identical to:
collection->iterate(x : T; acc : T2 = Bag{} |
acc->including(x.property))

OCL2

 Eclipse ECESIS Project!29

Predefined Operations

• OCL defines several Operations that apply to all objects
• oclIsTypeOf(t:OclType):Boolean

• results is true if the type of self and t are the same
context Employee inv:
self.oclIsTypeOf(Employee) -- is true
self.oclIsTypeOf(Company) -- is false

• oclIsKindOf(t:OclType):Boolean
• determines whether t is either the direct type or one of the supertypes of

an object

• oclIsNew():Boolean
• only in postcondition: results in true if the object is created during

performing the operation

• oclIsInState(t:OclState):Boolean
• results in true if the object is in the state t

OCL2

 Eclipse ECESIS Project!30

Predefined Operations 2

• oclAsType(t:OclType):T
• results in the same object, but the known type is the OclType

• allInstances
• predefined feature on classes, interfaces and enumerations
• results in the collection of all instances of the type in

existence at the specific time when the expression is evaluated
context Employee inv:
Employee.allInstances()->forAll(p1, p2 |
 p1 <> p2 implies p1.name <> p2.name)

OCL2

 Eclipse ECESIS Project!31

 Properties in Postconditions

• In a Postcondition property values can be accessed
at two times:
• value at precondition time (before operation execution)
• value after operation execution

• the "@pre“ mark can be used in a Postcondition to
refer to properties of the previous state
context Employee::birthdayHappens()
post: age = age@pre + 1

OCL2

 Eclipse ECESIS Project!32

Old values in Postconditions

• If the property (accessed with @pre) is an
object, then all further accesses refer to the
new value
a.b@pre.c -- takes the old value of property b
of a, say x

-- and then the new value of c of x.

• If the object is destroyed, the access result to
the current value is oclUndefined

• If the object is created, the access result to the
old value is oclUndefined

OCL2

 Eclipse ECESIS Project!33

Messages

• New in OCL 2.0

• Operator hasSent (‘^’) is used for specifying that during the
execution of an operation communication has taken place:
context Subject::hasChanged()
post: self.observer^update(8, 15)

• True if an update message with arguments 8 and 15 was sent to
observer
• update() is an Operation or a Signal defined in the UML model

• If the actual arguments of the operation/signal are not
specified, operator ‘?’ can be used

• Extra: Type declaration, in order to be able to address
operations exactly
context Subject::hasChanged()
post: observer^update(? : Integer, ? : Integer)

OCL2

 Eclipse ECESIS Project!34

Messages 2

• Message Operator ´^^´ results in the Sequence of
messages sent (each element in the Sequence is an instance
of OclMessage type)

• Afterwards access to the parameters of the sent Operation/
Signal with the formal parameter names of their definition is
possible
post:
let messages : Sequence(OclMessage) =
observer^^update(? : Integer, ? : Integer)

in
messages->notEmpty() and
messages->exists(m | m.i > 0 and m.j >= m.i)

OCL2

 Eclipse ECESIS Project!35

Messages 3

• Access to an operation return value (if the sent message is an
operation call) is possible whith message.result()
• message.hasReturned(): results true, if the operation

has already returned (asynchronous operation call)

context Person::giveSalary(amount : Integer)
post: let message : OclMessage =

company^getMoney(amount) in
message.hasReturned() -- getMoney was sent and

 returned
 and
message.result() = true -- getMoney call returned

 true

OCL2

 Eclipse ECESIS Project!36

Tips & Tricks to write good OCL 1

• Keep away from complex navigation expressions!
• a Membership does not have a loyaltyAccount if you cannot earn

points in the program:

context Membership
inv noEarnings:programs.partners.deliveredServices->
forAll(pointsEarned = 0) implies account >isEmpty()

context LoyaltyProgram
def: isSaving : Boolean = partners.deliveredServices

->forAll(pointsEarned = 0)
context Membership
inv noEarnings: programs.isSaving implies account->isEmpty()

OCL2

 Eclipse ECESIS Project!37

Tips & Tricks to write good OCL 2

• Choose context wisely (attach an invariant to the right
type)!

• two persons who are married to each other are not allowed to work
at the same company:

context Person
inv: wife.employers>intersection(self.employers)
->isEmpty() and husband.employers
->intersection(self.employers)->isEmpty()

context Company

inv: employees.wife->intersection(self.employees)->isEmpty()

CompanyPerson

0..n0..n

+employers

0..n

+employees

0..n0..1
0..1

+wife

0..1
+husband 0..1

OCL2

 Eclipse ECESIS Project!38

Tips & Tricks to write good OCL 3

• Avoid allInstances operation if possible!
• results in the set of all instances of the modeling element and

all its subtypes in the system
• problems:
• the use of allInstances makes (often) the invariant more complex
• in most systems, apart from database systems, it is difficult to

find all instances of a class

context Person
inv: Person.allInstances->

forAll(p| p. parents->size <= 2)

context Person

inv: parents->size <= 2

OCL2

 Eclipse ECESIS Project!39

Tips & Tricks to write good OCL 4

• Split and complicated constraint into several separate
constraints !
• Some advantages:
• each invariant becomes less complex and therefore easier to read and

write
• the simpler the invariant, the more localized the problem
•maintaining simpler invariants is easier

context LoyaltyProgram
inv: partners.deliveredServices
->forAll(pointsEarned = 0) and Membership.card
->forAll(goodThru = Date.fromYMD(2000,1,1)) and
participants->forAll(age() > 55)

context LoyaltyProgram
inv: partners.deliveredServices->forAll(pointsEarned = 0)
inv: Membership.card->forAll(goodThru = Date::fromYMD(2000,1,1))
inv: participants->forAll(age() > 55)

OCL2

 Eclipse ECESIS Project!40

Tips & Tricks to write good OCL 5

• Use the collect shorthand on collections!
context Person
inv: self.parents.brothers.children->notEmpty()

context Person
inv: self.parents->collect(brothers) -> collect(children)->notEmpty()

• Always name association ends!
• indicates the purpose of that element for the object holding the

association
• helpful during the implementation: the best name for the

attribute (or class member) that represents the association is
already determined

OCL2

 Eclipse ECESIS Project!41

Tools

• Some OCL Parser are available, which can check
syntax and evaluate OCL expressions (IBM and
others)

• Dresden OCL Toolkit 2.0
• Generates java code from OCL Constraints
• Can be integrated into Argo/UML and its code generation:
• Constraints from the model are included into the program

• LCI OCL Evaluator OCLE 2.0.4
• Support for dynamic semantic validation: allows execution of

OCL expressions directly from UML models
• UML model checking against Rules defined at the metamodel

level

OCL2

 Eclipse ECESIS Project!42

Tools 2

• Fraunhofer OCLTool
• Based on Kent OCL Library
• Uses EMF libraries
• Syntactic/semantic analyze and check of OCL expressions
• supports evaluation at runtime

• Supports any models based on EMF
• dynamic and some static metamodels are supported
• in this manner also UML2 models (EMF-based UML 2.0

Metamodel implementation)
• Ability to use it as query tool

OCL2

 Eclipse ECESIS Project!43

Tools 3

• Fraunhofer OCLTool (screenshot)
• check OCL constraint against an UML2 model

OCL2

 Eclipse ECESIS Project!44

Tools 4

• Octopus OCL (Eclipse Plug-In)
• Required Eclipse 3.0
• Analyze and check of OCL expressions
• Java Code generation
•Works on UML models
• supports XMI import (with limitations and workarounds)

• Open source software – distributed under a public (BSD) license
• www.klasse.nl/english/research/octopus-intro.html

http://www.klasse.nl/english/research/octopus-intro.html

