
PETE: Prolog EMF Transformation Engine

Bernhard Schätz
fortiss gGmbH

23/11/2010, Eclipse Demo Camp

How to describe model-to-model
transformations in a logical fashion

Example: Refactoring

Refactoring: Restructuring of hierarchy

• Components combined to group

• Group clustered in one component

2

Example: Refactoring

Refactoring: Restructuring of hierarchy

• Components combined to group

• Group clustered in one component

2

Basics: Set (De)Construction

Set (De)Construction:

• Interpretation: Set UnionSet is the union of LeftSet and RightSet
• Construction: union(+LeftSet,+RightSet,-UnionSet)

• Deconstruction: union(-LeftSet,+RightSet,+UnionSet) and
union(+LeftSet,-RightSet,+Unionset) as well as
union(-LeftSet,-RightSet,+UnionSet)

3

union(?LeftSet,?RightSet,?UnionSet)

[CompA,SubSystem,CompB][CompA,CompB] [SubSystem] =!

Basics: Set (De)Construction

Set (De)Construction:

• Interpretation: Set UnionSet is the union of LeftSet and RightSet
• Construction: union(+LeftSet,+RightSet,-UnionSet)

• Deconstruction: union(-LeftSet,+RightSet,+UnionSet) and
union(+LeftSet,-RightSet,+Unionset) as well as
union(-LeftSet,-RightSet,+UnionSet)

3

union(?LeftSet,?RightSet,?UnionSet)

[CompA,SubSystem,CompB][CompA,CompB] [SubSystem]= /

cpm:Comp

name = „compA“
comment = „A component“

Basics: Element (De)Construction

Element (De)Construction:

• Interpretation: Object Element has reference Entity and attributes
Attribut1,...AttributeN

• Deconstruction: class(+Element,-Entity,-Attribute1,...,-AttributeN)
• Update: class(-Element,+Entity,+Attribute1,...,+AttributeN)
• Construction: class(-Element,-Entity,+Attribute1,...,+AttributeN)

4

Comp(?Element,?Entity,?Name,?Comment)

„compA“ „A component“cmp
cpm:Comp

name = „compA“
comment = „A component“

Basics: Relation (De)Construction

Relation (De)Construction:

• Interpretation: Relation Relation links object Entity1 and object
Entity2

• Deconstruction: association(+Relation,-Entity1,-Entity2)
• Construction: association(-Element,+Entity1,+ Entity2)

5

sub sys

subComp(?Relation,?Entity1,?Entity2)

sub:Comp sys:Comp

Basics: Classes, Associations

Others (De)Constructions:

• Classes: Class Class has instances Elements
Example: Comp(Comps,[Root,Sys,Sub])

• Associations: Association Assocation has instances Relations
Example: subComp(SubComps,[SubSys,SysRoot])

6

root:Comp

name = „rootCmp“
comment = „Root comp“

sub:Comp

name = „subComp“
comment = „Subcomp“

sys:Comp

name = „sysComp“
comment = „System“

Basics: Structure of the Model

• Comps = Compound({ Root, Sys}), Atoms = AtomicComponent({ Sub })

• Root = Compound(root,‘rootCmp‘,‘Root Comp‘),
Sys = Compound(sys,‘sysComp‘,‘System‘)

• Sub = atomicComponent(sub,‘subComp‘,‘SubComp‘)

• SubComps = subComp({SubSys,SysRoot})

• SubSys = subComp(sub,sys), SysRoot = subComp(sys,root)

7

root:Compound

name = „rootCmp“
comment = „Root comp“

sub:atomicComponent

name = „subComp“
comment = „Subcomp“

sys:Compound

name = „sysComp“
comment = „System“

Transformation: Relations

Model Transformation: (Bi-Directional) Relation

• Pre-Model: Model before transformation

• Parameters: Set of elements to be clustered

• Post-Model: Model after transformation

• Example: cluster(Pre,Group,Post)

8

Transformation: De-/Construction

cluster(Pre,Group,Post) :-
 Architecture(Pre,PreClass,PreAssoc),
 Compound(PreComp,PreComps), OtherClass ! [PreCmp] = PreClass,
 subComp(PreSub,PreSubs), Assocs ! [PreSub] = PreAssoc,

 link(PreSubs,Group,OldRoot,OutSubs),
 Compound(OldCmp,OldRoot,Name),[OldCmp] ! Cmps = PreCmps,
 subComp(Sub,OldRoot,NewRoot), [Sub] ! OutSubs = InSubs,
 Compound(NewCmp,NewRoot,Name), [OldCmp,NewCmp] ! Cmps = PostCmps,
 link(PostSubs,Group,NewRoot,InSubs),

 subComp(PostSub,PostSubs), Assocs ! [PostSub] = PostAssoc,
 Compound(PostComp,PostComps), OtherClass ! [PostComp] = PostClass,
 Architecture(Post,PostClass,PostAssoc).

9

unlink all Group elements from OldRoot

link all Group elements to NewRoot

Transformation: Rules

The OutSubs subComp relation is an extension of the InSub
subComp relation by a Group linked under Root iff

• Either: Group is empty and InSub is OutSub
• Or: OutSubs is a corresponding extension of InSub

extended by linking some element Sub of Group to Root
with the Rest of the Group linked under Root

• link(InSubs,Group,Root,OutSubs) :-
Group = [], InSubs = OutSubs.

• link(InSubs,Group,Root,OutSubs) :-
 subComp(SubRel,Sub,Root),
 union([Sub],Rest,Group),union([SubRel],Subs,InSubs),
 link(Subs,Rest,Root,OutSubs).

10

Conclusion: Relation-Based Declarative
Model Transformations

• Transformation: Declarative, rule-based, relational
• Relational: Side-effect free for back-tracking

• Declarative: Implicit unification for constraint-solving

• Rule-based: Explicit control-flow for composition

• Application: Transformation in model-based development
• Medium-sized models: Up to 3000 elements and 5000 relations

• Complex transformations: Automated deployment, optimizations

• Verified transformations: Formal verification with theorem prover

11

