
© 2006 by IBM; made available under the EPL v1.0 | March 2006

A Tutorial based on the Eclipse Rich Client Platform
(eclipsercp.org)

Jean-Michel Lemieux and Jeff McAffer
IBM Rational Software

Rich Client Application Development

2 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Introduction

15 minutes

3 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Who are we?

� Jean-Michel Lemieux

� Jeff McAffer

� Eclipse usage?

� Eclipse plug-in development?

� Building RCP application today?

� What domains?

� Care to share?

Who are you?

4 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What are we doing here?

� Learn how to use the tools to create an RCP application

� Learn how to write RCP applications

� Learn how to brand and package RCP applications

5 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Introduction

� Writing RCP applications is different than just writing plug-ins. You have

the opportunity to define more of the look and feel, the branding, and

other fundamental elements of Eclipse which are not exposed to plug-in

developers.

� Traditional Eclipse plug-in development is focused on plugging into an

IDE. RCP development expands the boundaries of your application and

pushes you to think about frameworks of your own and how others will

integrate into your product.

� RCP architects are involved in more than just writing the app:

architecture (how many plug-ins, layering), branding, building (releng,

multiple platforms), deployment (how to get it to customers).

6 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

One minute sales pitch

How would you explain RCP to your boss in 8 bullets?

� Components

� Middleware and infrastructure

� Native user experience

� Portability

� Install and Update

� Disconnected Operation

� Development tooling support

� Component libraries

7 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Community of plug-ins

� Basic unit of function is a plug-in

� RCP developers collect plug-ins

from the Eclipse base, 3rd parties,

and develop their own

8 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse RCP Base

� You are in fact free to slice and dice the RCP itself or any other plug-in

set to suit your needs as long as the relevant plug-in interdependencies

are satisfied. In this book, we focus on RCP applications as applications

that use the full RCP plug-in set.

9 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What does it look like?

10 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Getting Started

15 minutes

11 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse Development Workflow

12 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

IDE Installation

� Using Eclipse 3.1 SDK for this tutorial

� eclipse-SDK-3.1-win32.zip

� Install at wherever you like

� We use c:\ide

� Start with an empty workspace

� We use c:\workspace

13 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is a “Target Platform”?

PDE models a configuration

Configuration = Workspace + Target

14 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Why Separate the Target and IDE?

� Cross development

� Develop for different versions of Eclipse

� Use leading edge 3.2M5 to develop product based on stable 3.1

� Have many different targets

� Update IDE and target independently

� Add new tooling function to the IDE

� Add new function to target that may not work in IDE

� Some hassles but lots of power/flexibility

15 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Target Installation

� Using Eclipse 3.1 RCP SDK for this tutorial

� eclipse-RCP-SDK-3.1-win32.zip

� Install at wherever you like

� System defaults to use IDE itself as target!

� We use c:\target

� See Target Platform location

� Window > Preferences > Plug-in Development > Target Platform

16 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Checkpoint

17 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Sample Manager

� Tool for loading and comparing various stages of the sample

application in this tutorial (not part of Eclipse itself)

� Lists final code for each stage

� Load stage N-1 to start work on stage N

� Compare as you go to correct errors, get large code chunks or data

files (e.g., icons), see what’s next

� Loading new stage removes content of old

18 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Installing the Samples Manager

1. Help > Software Updates > Find and Install…

2. RCP Book > Samples Manager.

3. New Local Site

4. Identify the location of the “updates” directory from the CD

5. Choose “org.eclipsercp.book.tools.feature”

6. Continue through wizard

7. No need to restart, just Apply Changes Now

After installing use RCP Book > Samples Manager

19 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

The Hello Hyperbola RCP Application

1. File > New > Project…

2. Plug-in Project

3. Enter “org.eclipsercp.hyperbola”

4. Uncheck the Plug-in Class option

5. Select the Yes radio button in the Rich Client Application

area of the page

6. On the RCP Templates page choose the Hello RCP template

7. Enter “Hyperbola” for the Application Window Title

20 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Launching Hyperbola

1. Open Plug-in editor by double-clicking on Hyperbola’s

� META-INF/MANIFEST.MF

� plugin.xml

2. Use the links in the Testing section of the Overview page

3. Click on the Launch an Eclipse application link

4. Hyperbola starts and looks like this

21 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exercise: Get setup and run Hyperbola

� Install IDE

� Install target

� Configure target into IDE

� Install Sample Manager

� Create Hyperbola shell application

� Run Hyperbola

10 minutes

22 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Tour of the Code

20 minutes

23 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Application

org.eclipsercp.hyperbola/Application
public class Application implements IPlatformRunnable {
public Object run(Object args) throws Exception {
Display display = PlatformUI.createDisplay();
try {
int returnCode = PlatformUI.createAndRunWorkbench(
display, new ApplicationWorkbenchAdvisor());

if (returnCode == PlatformUI.RETURN_RESTART) {
return IPlatformRunnable.EXIT_RESTART;

return IPlatformRunnable.EXIT_OK;
} finally {
display.dispose();

}
}

}

Must implement

run() can do

anything you want

Start UI; headless apps

don’t need one

24 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Application

smack.testing/Application
public Object run(Object args) throws Exception {
try {
XMPPConnection con = new XMPPConnection(“eclipsercp.org”);
con.login(“reader”, “secret”,
Long.toString(System.currentTimeMillis()));
Chat chat = con.createChat(“eliza@eclipsercp.org”);
chat.sendMessage(“Hi There!”);
Message message = chat.nextMessage(5000);
System.out.println(“Returned message: “
+ (message == null ? “<timed out>” : message.getBody()));

} catch (XMPPException e) {
e.printStackTrace();
}
return IPlatformRunnable.EXIT_OK;
}

run() doesn’t have

to start the

Workbench.

25 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Workbench Timeline

Startup

Shutdown

26 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

WorkbenchAdvisor

org.eclipsercp.hyperbola/ApplicationWorkbenchAdvisor

public class ApplicationWorkbenchAdvisor extends WorkbenchAdvisor {

public WorkbenchWindowAdvisor createWorkbenchWindowAdvisor(

IWorkbenchWindowConfigurer configurer) {

return new ApplicationWorkbenchWindowAdvisor(configurer);

}

public String getInitialWindowPerspectiveId() {

return “org.eclipsercp.hyperbola.perspective”;

}

}

Must extend

WindowAdvisor defines

look of all windows

Id of perspective extension

to use for new windows

27 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspective

org.eclipsercp.hyperbola/Perspective

public class Perspective implements IPerspectiveFactory {

public void createInitialLayout(IPageLayout layout) {

}

}

Empty implementation

28 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

WorkbenchAdvisor

org.eclipsercp.hyperbola/ApplicationWorkbenchWindowAdvisor
public class ApplicationWorkbenchWindowAdvisor extends WorkbenchWindowAdvisor {
public ApplicationWorkbenchWindowAdvisor(

IWorkbenchWindowConfigurer configurer) {
super(configurer);

}
public ActionBarAdvisor createActionBarAdvisor(

IActionBarConfigurer configurer) {
return new ApplicationActionBarAdvisor(configurer);

}
public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setInitialSize(new Point(250, 350));
configurer.setShowCoolBar(false);
configurer.setShowStatusLine(false);
configurer.setTitle(“Hyperbola”);

}
}

Must extend

ActionBarAdvisor defines

the toolbars, menus, …

Control the general

look of the window

29 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

ActionBarAdvisor

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor

public class ApplicationActionBarAdvisor extends ActionBarAdvisor {

public ApplicationActionBarAdvisor(IActionBarConfigurer configurer) {

super(configurer);

}

protected void makeActions(IWorkbenchWindow window) {

…

}

protected void fillMenuBar(IMenuManager menuBar) {

…

}

}

Must extend

Create the various actions

needed by this window

Add the actions to

the menu bar

30 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

The Extension Registry

� Extension Registry : declarative relationships between plug-ins

� Extension Point : plug-ins open themselves for

configuration/extension

� Extension : plug-in extends another by contributing an extension

“Plug-ins can contribute actionSets extensions that define actions with an id, a

label, an icon, and a class that implements the interface IActionDelegate. The UI

will present that label and icon to the user, and when the user clicks on the item,

the UI will instantiate the given action class, cast it to IActionDelegate, and call its

run() method.”

31 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Defining the application

The application is defined as an extension

org.eclipsercp.hyperbola/plugin.xml

<extension id="application" point="org.eclipse.core.runtime.applications"

name="Hyperbola Application">

<application>

<run class="org.eclipsercp.hyperbola.Application" />

</application>

</extension>

Application id Extension point

being extended

Class to run

32 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Running the application

� Run eclipse and pick the application

eclipse -application org.eclipsercp.hyperbola.application

� Run the JRE and pick the application

java -jar startup.jar -application org.eclipsercp.hyperbola.application

Full application id is

plug-in id + extension id

33 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, and
Views

60 minutes

34 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, Views, and all that

At this stage, you’ve ween the skeleton for Hyperbola.

You know how to run it, debug it, and are familiar with

the basic classes that are part of all RCP applications.

Next we will focus on Perspectives, Actions, and Views

with the goal of understanding the basics of the

Workbench RCP features.

Note: FOCUS on RCP things!!! Won’t get into generic Workbench

topics in the tutorial…

35 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, Views

In the end Hyperbola will look like this…

Some views, an editor, many menus

with actions, …

The chat client domain is a good example for experimenting with UI aspects

of RCP

36 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, Views

In Eclipse, users interact with applications through views and editors.

Perspectives are a mechanism for arranging views and editors and

supporting scalable UIs. Put another way, views and editors contain

the content for your application; perspectives allow those elements to

be organized for users.

We already have a perspective, it’s just empty.

37 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, Views

Ok, this is all great stuff but there is nothing RCP specific about it!

The difference with RCP applications is that you are in control of
much more than you were as a simple plug-in into an existing
product.

� Views can be created with properties such that they can’t be
moved, don’t show the title bar, and can’t be closed.

� The editor area is optional.

� Perspectives can be hidden from the user and you have full
control how they are presented.

38 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspectives, Actions, Views

You are in full control, but let’s

start with the basics first.

39 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding the contacts view

� A view is added by contributing a view extension to the

org.eclipse.ui.views extension point.

� Open the org.eclipsercp.hyperbola project’s plugin.xml and go to

the Extensions page. Click Add… and create an extension of

type org.eclipse.ui.views.

� Right-click on the extension and add a view attribute using New

> view from the context menu. When you click on the new view

attribute, the details pane at the right shows the default values

for the view.

40 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding the contacts view

You’ll need a class to implement the view. Click on the class link to create

a new class. When the new class wizard appears, most of the fields, including

superclass ViewPart, are already filled in. All you have to do is type

“ContactsView” for the class name. Click Finish and a skeleton view class

is created and opened in an editor.

41 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding the contacts view

All RCP applications must define at least one perspective; otherwise, there

would be nothing to lay out the views. Think of a perspective as a set of

layout hints for a window. Every IWorkbenchWindow has one page. The

page owns its editor and view instances and uses the active perspective to

decide its layout. The perspective details where, and whether or not, to show

certain things, such as views, the editor area, and actions.

42 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding to a perspective

org.eclipsercp.hyperbola/Perspective

public class Perspective implements IPerspectiveFactory {

public void createInitialLayout(IPageLayout layout) {

layout.setEditorAreaVisible(false);

layout.addView(ContactsView.ID, IPageLayout.LEFT,

1.0f, layout.getEditorArea());

}

}

43 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Making the view standalone

But you didn’t want the close button.

org.eclipsercp.hyperbola/Perspective

public class Perspective implements IPerspectiveFactory {

public void createInitialLayout(IPageLayout layout) {

layout.setEditorAreaVisible(false);

layout.addStandaloneView(ContactsView.ID, false,

IPageLayout.LEFT, 1.0f, layout.getEditorArea());

}

}

44 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Perspective debugging hints

You may notice that changes you made in code to a perspective

seem to be been ignored. Since we told the Workbench to save

settings on shutdown, it saves the perspective layouts in the

workspace location and on startup does not consult with the

perspective factory at all. IPerspectiveFactory is only needed the

first time a perspective is created.

To debug changes to a perspective factory, you must configure

your launch configuration to clear the workspace area on each

launch. Open the launch configuration dialog as shown earlier and

check the option called Clear workspace data before launching

and uncheck Ask for confirmation before clearing.

45 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exercise – Playing with perspectives

Start with Chapter 5 sample code, try and modify the code to do the

following:

� Experiment with perspective layouts

� Add the editor area

� Add a moveable contact list

� Add a fixed contacts list with a title but

which is not closeable

� Advanced

� Add two other empty views

� Create different perspective layouts

46 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions

Actions are everywhere: in toolbars, top-level menus, context menus, status

lines, trim area.

RCP applications have an important responsibility of designing the top-level

action area structures.

org.eclipsercp.hyperbola/ApplicationWorkbenchWindowAdvisor

public void preWindowOpen() {

IWorkbenchWindowConfigurer configurer = getWindowConfigurer();

configurer.setInitialSize(new Point(250, 350));

configurer.setShowMenuBar(true);

...

}

Advisor controls menu,

toolbar, status line visibility.

47 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Hide and seek

Although the advisor controls the initial visibility of the areas, it can’t toggle

them afterwards. If this is something you need, it is possible.

See ApplicationWorkbenchWindowAdvisor.createWindowContents()

48 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions - Lifecycle

� ActionBarAdvisor is a dedicated advisor for creating and managing top

level actions.

� The ActionBarAdvisor is separate from the WorkbenchWindowAdvisor

since an application often has hundreds of actions — this more clearly

separates the concerns.

Advisor.makeActions() is called

before the WorkbenchWindow’s

controls are created.

Widgets can’t be accessed.

49 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Top-level menus

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor
public class ApplicationActionBarAdvisor extends ActionBarAdvisor {
private IWorkbenchAction exitAction;
private IWorkbenchAction aboutAction;
protected void makeActions(IWorkbenchWindow window) {
exitAction = ActionFactory.QUIT.create(window);
register(exitAction);
aboutAction = ActionFactory.ABOUT.create(window);
register(aboutAction);
}
protected void fillMenuBar(IMenuManager menuBar) {
MenuManager hyperbolaMenu = new MenuManager(
“&Hyperbola”, “hyperbola”);

hyperbolaMenu.add(exitAction);
MenuManager helpMenu = new MenuManager(“&Help”, “help”);
helpMenu.add(aboutAction);
menuBar.add(hyperbolaMenu);
menuBar.add(helpMenu);
}
}

Create the actions once

Register with Workbench for

keybindings and lifecycle

Place the actions

Create the menu structure

Provide context to the actions

50 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Toolbars

Same idea as for menus, same action instances can be added to
both the toolbar and the menu.

org.eclipsercp.hyperbola/ApplicationWorkbenchWindowAdvisor
public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setShowCoolBar(true);
...
}
org.eclipsercp.hyperbola/ApplicationActionBarAdvisor
protected void fillCoolBar(ICoolBarManager coolBar) {
IToolBarManager toolbar = new ToolBarManager(coolBar.getStyle());
coolBar.add(toolbar);
toolbar.add(addContactAction);
}

51 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Status line is problematic

� Showing the status line is easy

org.eclipsercp.hyperbola/ApplicationWorkbenchWindowAdvisor

public void preWindowOpen() {

IWorkbenchWindowConfigurer configurer = getWindowConfigurer();

configurer.setShowStatusLine(true);

...

}

� Beware: Status line is a shared resource!

� Don’t call IStatusLineManager.setMessage() in

ActionBarAdvisor.fillStatusLine().

52 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Status line

� You can make contributions IStatusLineManager.addContribution().

But they are placed in the middle of the status line.

� In 3.2, you can use trim contributions to allow more configurability of

the status line.

� In Hyperbola since you are in full control, the simple solution is to

use the message area.

53 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Standard actions

� Workbench defines a set of reusable actions. These actions are defined
as inner classes of org.eclipse.ui.actions.ActionFactory and are
instantiated and used like regular actions.

exitAction = ActionFactory.QUIT.create(window);

� Before implementing an action in your
application, check to see if ActionFactory
defines a related action such as:

Save, Save all, Save As, Preferences,
Properties, About, Close, Close All,
Help, Import, Export

54 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – What about declarative actions?

� Workbench has many extension points for contributing actions.

� When should they be used instead of programatically adding

them in the ActionBarAdvisor?

� In small RCP apps there is no need for declarative actions.

Minimally the app needs to define the application structure and

stable set of menus and toolbars.

55 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions – Declarative action advantages

� They allow lazy loading of plug-ins by being shown in the UI without
loading their associated plug-in. In large applications with many plugins,
this is very important.

� Declarative actions can be associated with perspectives and easily
allow dynamic reconfiguration of top-level menus and toolbars based on
the active perspective.

� They allow users to configure top-level menus and toolbars via the
perspective customization dialog (refer to the
ActionFactory.EDIT_ACTION_SETS class for more details).

� Declarative action contributions can easily be filtered out of the
application using capabilities.

56 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions - Allowing declarative actions

� Even if you choose not to use declarative actions for your part of

the application, you should design your application so that other

plug-ins can extend its menus and toolbars.

� Add placeholders to top-level menus and toolbars.

� Placeholders are named entities that can be referenced from

extension points.

� Hyperbola already has a named menu with the id “hyperbola”

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor

MenuManager hyperbolaMenu = new MenuManager(“&Hyperbola”, “hyperbola”);

57 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions - Allowing declarative actions

� The Workbench supplies a standard placeholder id that is used to mark the
location in a contribution manager where contributions are added. The constant
IWorkbenchActionConstants.MB_ADDITIONS (defined as “additions”).

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor
protected void fillMenuBar(IMenuManager menuBar) {
// Top-level menu called Hyperbola with id ‘hyperbola’.
MenuManager hyperbolaMenu = new MenuManager(“&Hyperbola”,
“hyperbola”);
hyperbolaMenu.add(chatAction);
// Placeholder within the ‘hyperbola’ menu called ‘additions’. This
// can be referenced as ‘hyperbola/additions’.
hyperbolaMenu.add(new
Separator(IWorkbenchActionConstants.MB_ADDITIONS));
hyperbolaMenu.add(new Separator());
hyperbolaMenu.add(exitAction);
}

Menu path is “hyperbola/additions”

58 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions - Allowing declarative actions

� Placeholders are added as either Separators or GroupMarkers.
Separators surround all contributions by the appropriate separators,
whereas contributions to a GroupMarker are added as-is, without any
additional separators.

� To support action contributions to menus anywhere in your application,
not just at the top level of menus, you must document the menu and
group ids defined by your application.

� The Workbench provides a list of commonly used menu ids in
IWorkbenchActionConstants.The IDE product uses these, but you are
free to use your own identifiers instead.

� These ids effectively become API and so should be documented and
maintained.

59 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Actions - Declaring the actions

� Now that the placeholders are in place, let’s declaratively add some action sets to Hyperbola.

� org.eclipse.ui.actionSets—This extension describes a set of menus and actions that is added to
the top-level menu and toolbar. Action sets are enabled and disabled as a group.

org.eclipsercp.hyperbola/plugin.xml
<extension point=“org.eclipse.ui.actionSets”>
<actionSet
id=“org.eclipsercp.hyperbola.actionSet1”
label=“Tools”
visible=“true”>
<action
class=“org.eclipsercp.hyperbola.actions.ExportContactsAction ”
icon=“icons/export.gif”
id=“org.eclipsercp.hyperbola.exportContacts”
label=“&Export Contacts”
menubarPath=“hyperbola/additions”
style=“push”/>
</actionSet>
</extention>

60 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exercise: Perspectives, View, and Actions

Start with the code from Chapter 5 and add the following:

� Basics

� Add the menu bar and toolbar. Add actions to both. Basic actions to exit, start

a new chat, open another view.

� Add status line contributions.

� Add a task tray and actions to the task tray.

� Compare with Chapter 6 code for hints

� Advanced – Start with Chapter 14 code.

� Add declarative actions to Chapter 14 and compare with Chapter 17.

� Add another perspective and add actions to switch between perspectives.

� Add a action to open another window.

20-30 minutes

61 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding

30 minutes

62 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is Branding?

� One of the big key differences when developing for RCP

� Visual cues that differentiate your product from others

� Title bar label

� Window icons

� Desktop icon

� Splash screen

� Program (launcher) name

� About dialog information

� A product wrapper on an application

63 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Defining a Product

� Products are composed of the following files

� Product configuration (.product) file

� Product extension (in plugin.xml)

� config.ini

� launcher

� Define a Product Configuration file

� File > New > Other… > Plug-in

Development > Product Configuration

� Use a launch configuration

64 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Filling out the Product

� Define a product extension

org.eclipsercp.hyperbola.product

� Identify application

� Set product name

� Products list plug-ins or features

� Listing plug-ins is easy

� Listing features scales better

� Plug-in list automatically populated from launch configuration

� Product id stored in config.ini at build-time

eclipse.product=org.eclipsercp.hyperbola.product

65 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding – Window Images

� Window images appear

� in the top-left corner of windows

� Task bar on Windows

� …

� Actually can be a list of images

� Add images on the branding page of

the product editor

� Image locations stored in product

extension in plugin.xml

Window Image

66 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding – Launcher

� From your user’s point of view the launcher is

“your application”

� It’s the first thing your users see

� Brand launcher with

� name

� icon(s)

� Platform-dependent images

� Supply all resolutions on Windows

� Images are used at build-time

Launcher Icon

67 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding – Splash Screen

� Hopefully users don’t see this for long ☺

� Applications can be big

� Running over networks,

� …

� Nonetheless important for

� Usability

� Product image

� Legal issues

� Splash supplied in a plug-in identified in the config.ini

osgi.splashPath=platform:/base/plugins/org.eclipsercp.hyperbola

� Fragments can be used to deliver locale-specific splashes

68 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding – About information

� About dialog shows attribution, version, …
� Gateway to detailed info about the app

� About Image and text stored in product
extension in plugin.xml

� Localized text stored in properties
files/fragments

org.eclipsercp.hyperbola/plugin.properties
aboutText=\n\nHyperbola Chat Client (Workbench)\n\
Version: 1.0.0\n\n\
Hyperbola is an RCP application developed for the book \n\
\tEclipse Rich Client Platform \n\
\t\tDesigning, Coding, and Packaging Java Applications \n\
\n\
(c) Copyright Jeff McAffer and Jean-Michel Lemieux 2005. \
All Rights Reserved.\n

69 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

“I showed an RCP application to my boss the other day

and he said that it was nice but it still looked like Eclipse.”

– over heard in a meeting

If you don’t like it – change it!

� Presentations API

� Controls the look and feel of views and editors

� WorkbenchWindowAdvisor customizations (RCP applications only)

� Override createWindowContents()

70 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

Non-rectangular

window

Additional Controls

not part of a

perspective

Hiding the Toolbar

and Status Line

Multiple editor rows

and customized

editor management

Custom tab

management

Views that only

show icon and

toolbar

71 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

� Presentation = A look and feel extension for Workbench parts.

� Part = a view or editor.

� Presentations manage the trim and layout of areas that contain

one or more parts – called part stacks.

� Widget factories, not skinning

� Don’t just paint widgets. Supply the widgets themselves.

� Don’t lose that native feelin’

� Benefits

� Maximum flexibility

� No custom widgets needed

72 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

� Create the trim for part stacks

� Tabs

� Title

� System menu

� Close/Minimize/Maximize buttons

� Borders

� Control layout and visibility

� Parts

� Toolbars

� View menus

� Drag/drop regions

73 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding – Removing the presentation

74 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

From the IDE preference page Using a preference

Preference customization file
R21 presentation settings: copy these values to your product's

plugin_customization.ini file before starting eclipse

use the R2.1 style

org.eclipse.ui/presentationFactoryId=org.eclipse.ui.internal.

r21presentationFactory

You need to restart the Workbench – kind of ☺
� When you change the presentation in the preference dialog, you will be asked to restart the

Workbench. Instead, open a new window. The new presentation will be used for all new windows.

75 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

If you want to change how the Workbench creates these controls you

have two choices:

� Change the visibility of some of the controls by using the

IWorkbenchWindowConfigurer.setShow*() methods. These control

the initial visibility only and cannot hide/show the controls once the

window is opened.

� Change the visibility and layout of the entire workbench window by

overriding WorkbenchAdvisor.createWindowContents(). This

moves responsibility for creating all of the window’s controls to the

advisor.

76 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

public void createWindowContents(IWorkbenchWindowConfigurer

configurer, final Shell shell) {
Menu menu = configurer.createMenuBar();

shell.setMenuBar(menu);
FormLayout layout = new FormLayout();

layout.marginWidth = 0;
layout.marginHeight = 0;

shell.setLayout(layout);

toolbar = configurer.createCoolBarControl(shell);
page = configurer. createPageComposite(shell);

statusline = configurer.createStatusLine(shell);

The IWorkbenchWindowConfigurer provides methods to create the common

workbench controls and can be called from within the createWindowContents()

method. The controls returned from the control creation methods are un-typed

and are provided uniquely for placement within the layout defined by the

advisor. They are not meant to be configured or downcasted.

Using a FormLayout to

allow toggling the

visibility of controls in

the workbench window.

77 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Advanced Branding

Another common technique for making an application stand out is to

forfeit the platform’s standard window look and provide your own

custom shaped window with curves, see through areas, and a funky

design.

� Hire a graphic designer.
� Use image mask to create SWT Regions to define Shell shape.
� WorkbenchWindowAdvisor.preWindowCreate() ensures Shell

style set to SWT.NO_TRIM before the Shell is created.
� Once the window is created in postWindowCreate(), add a paint

listener to the Shell to draw the border for the shaped window
and set the region of the Shell.

� In createWindowContents() create the controls for the window.

public void preWindowOpen() {

getWindowConfigurer().setShellStyle(
SWT.NO_TRIM | SWT.ON_TOP | SWT.NO_BACKGROUND);

}

shell.setRegion(currentRegion);

78 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Branding

There are many options for branding, but nothing comes for

free. Here’s a quick summary of your options:

� Splash, Icons – easy

� Help, About – easy

�Window Contents – moderate

� Custom Presentation – hard

79 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Packaging

20 minutes

80 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is packaging?

� Transformation

Development form ⇒ Deployment form

� For example

Workspace projects ⇒ Built JARs

� Produces

� Stand-alone, runnable application in directory or archive

� Update site population

� JNLP/WebStart deployment

� Installers (e.g., InstallShield) not directly supported

81 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Mapping Development onto Deployment

� Main task is identifying development time artifacts to
include/exclude from deployed form for each plug-in/feature

� Define this information in the build.properties file

org.eclipsercp.hyperbola/build.properties
source.. = src/
bin.includes =
plugin.xml, META-INF/,\
plugin.properties,\
.,\
splash.bmp,\
icons/

Source for ‘.’
What dev resources to

include in deployment

Development resources to

include in deployment

82 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exporting the Product

� Product Export wizard link

on Overview page

Root directory to put in

output archive or directory

Output destination

and form

83 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Cross-platform Exporting

� Typical target has the current platform’s fragments

� org.eclipse.swt.win32.win32.x86

� Delta pack includes fragments

for all platforms

eclipse-RCP-3.1-delta-pack.zip

� Export for many platforms at once

84 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Cross-platform exporting steps

� Unzip delta pack over target directory, Reload the target

� Add all needed platform-specific fragments to the product

configuration plug-in list

� Use Export product wizard and check Export for multiple

platforms and then click Next for Cross-platform export

� Choose platforms and export

� Output appears in appropriately named archives or directories

85 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exercise: Branding and Packaging Hyperbola

� Start with Chapter 7 sample, work towards Chapter 9

� Brand Hyperbola

� Get branding images etc by comparing with Chapter 8 sample

� Package Hyperbola

� Export and run

� Confirm branding is correct

� Bonus: Export Hyperbola for several different platforms

20 minutes

86 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding Function: Help

20 minutes

87 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is the Help system?

� Browser driven help system

� Fully Integrated (e.g., supports F1 help)

� Context-sensitive, dynamic help

� Extensible weaving of content into books

� Other “user assistance”

mechanisms such as Cheat

Sheets, Welcome Pages,

Intro, … also available

88 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Getting Help

� Help comes as part of the IDE Platform and SDK

� Copy the following Help plug-ins from

<ide>/eclipse/plug-ins into <target>/eclipse/plugins

1. org.apache.lucene

2. org.eclipse.help.appserver

3. org.eclipse.help.base

4. org.eclipse.help.ui

5. org.eclipse.help.webapp

6. org.eclipse.tomcat

7. org.eclipse.ui.forms (prerequisite)

� Reload the Target Platform (PDE preferences > Target Platform)

89 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding Help to Hyperbola

� Add the new plug-ins to the Hyperbola product configuration

� Create the action

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor

makeActions() {

…

helpAction = ActionFactory.HELP_CONTENTS.create(window);

register(helpAction);

� Place the action

org.eclipsercp.hyperbola/ApplicationActionBarAdvisor

makeActions() {

…

MenuManager helpMenu = new MenuManager(“&Help”,”help”);

helpMenu.add(helpAction);

helpMenu.add(aboutAction);

90 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Adding Help Content

� Contributed via extensions

� Use the Help Content

extension wizard!

� Set label and choose categories

� Change content as desired

� Run Hyperbola and select

Help > Help Contents

� Don’t forget to add generated

content to build.properties

91 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Exercise: Add Help to Hyperbola

� Start with Chapter 12 and work towards Chapter 13

� Follow steps outlined here

� Compare to see examples of dynamic help

10 minutes

92 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere

30 minutes

93 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere

� Imagine Hyperbola was to be used in a hospital

� Doctor to doctor from PDAs while making rounds

� Patient to Patient/Staff using kiosks in patient rooms, ER, waiting

rooms, …

� Administration, management, researchers and lab technicians

using standalone desktop application

� IT department developer’s integrated with their Eclipse IDE

94 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere: Hyperbola on a PocketPC

95 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere

� Componentize ruthlessly

� Simplify structure

� Manage dependencies

96 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere

Before:
� Obvious RCP implementation

� Traditional Core/UI split

After:
� Several Product Configurations

� Refactored plug-in structure

JFace

IDE

PDA

Standalone

Dependency Plug-in
Product

Configuration

smack
smack

debug
Runtime SWT

JFace

Workbench

hyperbola

hyperbola.ui

hyperbola.ui.workbench

97 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Why so many features and products?

� The scenarios require different product configurations

� Product plug-in contributes and positions common function

� Product feature captures the plug-ins required for a

configuration

� Package configuration by exporting the feature

� Package by exporting product definitions (.product files)

� Features facilitate use of Eclipse Update Manager

� Features enable the use of PDE for “releng” (automated) builds

Rule 1: Have a top-level feature and plug-in for every

product configuration

98 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Minimize Dependencies

� Monolithic plug-ins don’t scale

� Worse, they can’t be re-used in different applications

� Develop your application as a set of loosely coupled plug-ins

� Eclipse SDK anti-patterns

� Many plug-ins could be refactored – would break APIs.

� Other plug-ins have hard dependencies on IDE or Resources plug-ins

� Minimize and layer dependencies

� Workbench contributions

� Actions

� Views, editors, wizards, preferences, …

� Data model

Rule 2: Minimize and layer plug-in dependencies

99 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Isolate Workbench Contributions

Rule 3: Minimize Workbench contributions in framework

plug-ins

� Product configurations contribute to specific products

� Many implicit APIs

� Menu and toolbar paths

� Predefined menus

� Well known entry points

� Show View

� Open Perspective

� Increase reuse of framework

plug-ins

Eclipse IDE

Preference and

Properties Dialogs

New, Import, Export

Wizards included

Menu & Toolbar paths

/file, /edit, /help, /window

Perspective List

Hyperbola

Preference Dialog

Menu and Toolbar paths

/hyperbola, /tools,

/contacts, /help

A plug-in can contribute

to only one product

Plug-ins without

contributions can be

reused

Plug-in

100 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What happens if you don’t?

� Add full-featured text editing to Hyperbola

� Use org.eclipse.ui.externaltools and org.eclipse.ui.editors – that’s where

all the funky text editing is!

� Set up dependencies (this is usually a warning sign – drags in IDE)

� Write code

� When you run you see

� Invalid Menu Extension (Path is invalid):

org.eclipse.ui.edit.text.gotoLastEditPosition

� Unexpected contributions in the UI

101 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Views and Editors: UI Containers

� Build UI elements using only JFace primitives

� Allows building applications without the Workbench

� Treat views and editors as containers

� Design components separate from container

� Use containers to plug together components as needed

� Example: Hyperbola ChatViewer

� may show up in a view or an editor based on user preference

� RosterViewer and ChatViewer expose application’s data model

� Decoupling pattern, such as Inversion of Control, used for composition

Rule 4: Decouple UI components from their containers

102 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Optional Dependencies
� Layer dependencies within the same plug-in

<requires>

<import plugin="org.eclipse.core.runtime"/>

<import plugin="org.eclipse.emf.common" export="true"/>

<import plugin="org.eclipse.core.resources" optional="true"/>

</requires>

� Example: core EMF plug-in

� Resources dependent code gathered into the same package

� Abstract data model accommodates both java.io.File and IResource

� Build RCP and Eclipse IDE applications using the same core EMF plug-in

� Example: org.eclipse.ui.forms

� 95% depends on SWT but Workbench needed for support multiple-editors

� Example: org.eclipse.help.base

� Depends on Ant for JSP compilation

� Disadvantage: unused code can be shipped

Rule 5: Use optional dependencies for intra-plug-in

layering

103 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Building a platform

� The progression from a simple product to a platform involves

pushing function down into framework plug-ins.

� The focus shifts from shipping one specific product to

understanding what function is generic and how other products

can be built around that function. That is the nature of the

platform.

� Platform oath: APIs, Extension Points, Long term commitment

104 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Identifying RCP friendly plug-ins

� We use the term friendly as a synonym of what we’ve also been
calling framework plug-ins. These are plug-ins that are designed
to work in any product.

� The simple answer is that if a plug-in manages its dependencies
and uses optional dependencies appropriately, then it is a
framework plug-in and is RCP friendly.

� Open the plugin.xml for the plug-in you are examining and look at
the set of plug-ins it requires. If it requires a product, for example
the Eclipse IDE, then it is not a framework plug-in.

� Next, look at its extensions for specific references to toolbar or
menu paths, preference pages, or other contributions that place
elements in the UI. In general, views and editors are acceptable
since they do not appear in the UI unless they are explicitly placed.

105 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

RCP Everywhere - Conclusion

� Focus on your domain

� Ruthlessly componentize

� Eclipse RCP can produce high quality products in many configurations

� Eclipse RCP Everywhere rules are relatively simple

� Following the rules generates extreme flexibility

� Can be retrofitted but best if RCP Everywhere is an upfront goal

106 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse 3.2

107 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

What’s New in 3.2?

� Too much to list but here are some highlights…

� Improved Target management (e.g., Named Targets)

� Minimum Execution environment support (target plug-ins to J2ME

etc)

� Many refinements in PDE tooling

� Refactored runtime plug-ins

� Integrated progress on startup

� Lots of new widgets and features in SWT

� Loads of User Assistance (e.g., Help, Cheat Sheets, …)

improvements

108 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Equinox

� Stand-alone implementation of OSGi framework
� Basis for all Eclipse systems
� Server-side Incubator

� http://www.eclipse.org/equinox/incubator/server

� Extension registry outside Eclipse

� http://www.eclipse.org/equinox/bundles/

� Many useful bundles

� HTTP Service

� Declarative services

� Event Admin

� Preferences

109 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Wrap-up

110 Rich Client Application Development | A Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse Rich Client Platform – The Book

� The book dedicated to RCP

� Tutorial and deep dive suitable for

newbies and oldies

� http://eclipsercp.org

� ISBN 0-321-33461-2

� Available from Amazon.com etc. and

in the EclipseCon bookstore ☺

