
© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

Buckminster | Component Assembly Project

A subproject of the Eclipse Technology Project

Buckminster | Component Assembly Project 2

Problems?

Buckminster | Component Assembly Project 3

GrowingPains Inc. – Starting out

Startup – financing completed!

� Team starts coding
� Code base is small

� All know whole system

� Building is easy & fast

� Communication is easy & ad hoc

� Only one configuration

High pressure to reach the market in time!

Buckminster | Component Assembly Project 4

GrowingPains Inc. – Leveling out

Success – v1 out the door after 6 months!

� Team expands to build v2 and maintain v1
� Code base grows

� Harder to know whole system

� Building is somewhat complex and buildtimes go up

� Communication must be more formal and less ad hoc

� # of supported cfgs/variations increases

High pressure to timely fulfill market expectations!

Buckminster | Component Assembly Project 5

GrowingPains Inc. – Strain starts to tell

Success – v2 out the door after another 18 months!

� Team expands and becomes physically distributed to maintain v1/v2, and
laterally expand the market to new cfgs/variations based on v2
� Code base grows really big

� Product portfolio expands

� Impossible to know whole system

� Building is a black art; full builds take looong

� Communication is hard, esp. given time zone diff:s

� # of supported cfgs/variations increases exponentially

� New hires have a hard time becoming productive

� Many unnecessary ’non-problems’

High pressure to follow up market success!

Buckminster | Component Assembly Project 6

GrowingPains Inc. - Victims of success?

The situation is understandable, but really requires addressing

So, what’s to be done?

Many issues, so presently we’ll focus around monolith codebase related issues

Buckminster | Component Assembly Project 7

Straightening out the kinks

Buckminster | Component Assembly Project 8

The componentized monolith

� A new & better monolith can be arrived at
� It is generally a necessary first step

� But, will only scale a finite amount better

� Regardless, there are some definite benefits:
� Clearer separation of concern

� Responsibility can be disseminated among persons/groups

� Software architecture can be made clearer
� For example, by separating external from internal API

Buckminster | Component Assembly Project 9

Component hierarchy becomes an important topic

� For example, no circular dependencies allowed!
� Impossible to calculate build order

� Java allows it because the compiler handles it, but you can’t create
regular makefiles for it. May be acceptable internally for a component
though.

� A monolith lacks some flexibility
� What to do if a variant is needed where only a single subsystem is

upgraded?
� The general problem is clear: how to describe a configuration with

both ’what components’ and ’what versions of those components’.
Then, how are such configurations materialized to disk (from
potentially several sources).

Buckminster | Component Assembly Project 10

Sample scalability issue...

� Build times does not necessarily improve; in fact, it can get worse!
� Builds are still made begin-to-end each time

� Due to otherwise improved structuring, a componentized build script might
perform worse*

makefile

...

...

/ makefile

makefile

...

/

makefile

...

* ”Recursive Make Considered Harmful” (http://aegis.sourceforge.net/auug97.pdf)

a

b

Buckminster | Component Assembly Project 11

Common solution:
Replace source with prebuilt libraries

� Good solution, but generally has some weaknesses
� requires management and tool support to ensure correctness

� is difficult when you need to run with the source for debugging
purposes (what source corresponds to what binary, what changes are
needed in make files to dynamically adjust to etc)

� A tool solution needs to be able to dynamically use rules to switch
between one form or another, often according to user intentions, and
transparently propagate knowledge between otherwise ignorant
components

Buckminster | Component Assembly Project 12

� Small/smooth movements at the (producer) base translate to
wild/jerky motion at the (consumer) end!

� ...compare to a whip:

� ...or a car convoy:

The consumer/producer problem

Buckminster | Component Assembly Project 13

So, producers are frequently driving the rate of change

� Which means consumers:
� has a hard time to influence timing

� frequently has to work in an unstable environment

 Consumers may not be able to control the rate of change...but they
should have control of accepting changes at their own rate. More
power to the consumer!

Buckminster | Component Assembly Project 14

Separation achieved but needs to be maintained

� Beware: developer inventiveness and time pressure can quickly
erode componentization
� Cheats can go undetected a long time (and, you can be sure they

will rear their heads at the most inopportune moment...)

Actually, it’s sometimes ok to cheat, but it should be:
� Harder to do casually

� More visible

� More localized

Buckminster | Component Assembly Project 15

Componentizing is good, but a monolith is still a monolith...

Next step!

Buckminster | Component Assembly Project 16

Divide & Conquer!

Buckminster | Component Assembly Project 17

Increase reusability opportunities!

� Apply OO principles on several levels
� Data hiding, encapsulation, abstractness

� Encourages separation of concern

� Encourages interface & implementation splits

� Encourages looser coupling

� Encourages better design mapping
� Explicit component dependencies more visible

� Helps with impact analysis
� Enables higher parallelism
� Clearer areas of responsibility

Depends on A,B,C

Component FOO

Private src layout

Public bin layout

Buckminster | Component Assembly Project 18

Some assembly required, though

� New/adapted tools & processes – sample issues:
� Components have individual life cycles (but pay attention to what co-

varies and avoid incorrect componentization)

� Impacts how Configuration Management/Version Control is performed

� Keep track of configurations (components/versions, dependencies)

� A generic build initiation framework understanding piece-by-piece
builds, combine builds, persisted intermediate results etc

� Systems & people must ’talk’ using the same terminology
� A fair amount of admin/management/development/maintenance
� Must be open enough to wrap an existing environment before

progress can be made

Buckminster | Component Assembly Project 19

Solution?

Buckminster overview

Buckminster | Component Assembly Project 20

Summary

� The Buckminster high-level definition statement:
 Buckminster addresses development problems associated with assembling

complex component structures in team-based development

� Buckminster makes use of, and leverages, Eclipse and its
architecture/framework. Works as both a fully integrated UI in the IDE, but
also as a freestanding (command-line) executable environment.

� Project name: after Buckminster Fuller, architect, engineer; inventor of the
geodesic dome; pioneer of manufactured modular structures.

 “When I'm working on a problem, I never think about beauty. I think only how to
solve the problem. But when I have finished, if the solution is not beautiful, I know
it is wrong.”

 R. Buckminster Fuller
US architect & engineer (1895 - 1983)

Buckminster | Component Assembly Project 21

Key objectives

� Buckminster’s primary objective is to leverage & extend Eclipse to:
� bring complex component development on par with current mechanisms for plug-

in & feature development

� extend the component dependency model to allow materialization based on
match rules

� Buckminster will accomplish this by:
� introducing a project/component-agnostic way of describing arbitrarily complex

component structures and dependencies in development projects

� allowing component materialization based on match rules, i.e.similar to platform
mechanism for runtime resolution of plug-ins/features

� providing a materialization mechanism that handles all component types
referenced through repository handlers

Buckminster | Component Assembly Project 22

Features

� Buckminster currently includes:
� Complex dependency resolution

� Uniform component dependency formats

� Intelligent retrieval mechanisms

� Buckminster is itself componentized and has several possibilities of
being extended easily (through the generic Eclipse ’extension point’
mechanism).

Buckminster | Component Assembly Project 23

Drill-down: Complex dependency resolution

� Provides recursive resolution of dependencies

� Supports a variety of versioning schemes

� Applicable to source and binary artifacts that are not version-
controlled in a traditional sense

� Uses match rules similar to those in the Eclipse plug-in runtime
framework, eventually allowing comparison of current and prior
dependency resolutions to support update impact analyses

Buckminster | Component Assembly Project 24

Drill-down: Uniform component dependency format

� Component-type agnostic mechanism for describing components
and their respective targets and dependency requirements

� Will leverage dependency info associated with typical Eclipse
projects and range of other component types

� Extensible to provide additional strategies for dependency pattern
recognition

Buckminster | Component Assembly Project 25

Drill-down: Intelligent retrieval mechanisms

� Separating the bill of material needed for a given configuration from
its actual materialization

� Separation is of value since:

� dependencies may appoint software that is locally installed on one
machine but lacking on another

� bills of materials may be shared between team members, while
materialization info may vary

� information about repositories will be abstracted out in order to provide
site and repository transparency

Buckminster | Component Assembly Project 26

Demos

� Buckminster in action

Buckminster | Component Assembly Project 27

Buckminster in action – sample scenario (1)

� Scenario: ’I want to write code for Buckminster’
� Fire up Eclipse

Buckminster | Component Assembly Project 28

Buckminster in action – sample scenario (2)

� Use the ’Open Project’ Wizard

Buckminster | Component Assembly Project 29

Buckminster in action – sample scenario (3)

� Enter the ’known’ entrypoint
� org.eclipse.buckminster

� With the given component
name, the resolver can figure
out in what repository it should
look.
� Either press Finish outright,

or use Next...

Buckminster | Component Assembly Project 30

Buckminster in action – sample scenario (4)

� The wizard has walked the entire
depency tree (in this case about
60 components required) and
made default selections.
� Each component can be

resolved ’by hand’ if desired

� Many components are fulfilled
by the running Eclipse instance

Buckminster | Component Assembly Project 31

Buckminster in action – sample scenario (5)

� The final step is to ’materialize
and bind’
� I.e. download code from

respective repository and make
it visible to Eclipse as native
’projects’

� Again, most components are
fulfilled by the running Eclipse
instance itself, thus no
materialize/bind required

Buckminster | Component Assembly Project 32

Buckminster in action – sample scenario (6)

� The required components are now ready for use

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

Thank You

Please visit:
http://www.eclipse.org/buckminster

