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Why is testing RCP Applications 
a topic?
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WHAT IS A SCOPE?
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WHAT IS A SCOPE?

AND WHY IS IT IMPORTANT?
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SCOPE: UNIT-TEST
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SCOPE: UNIT-TESTS

Advantage:
✓Testing on method/class scope
✓Easy to execute in IDE
✓Fast
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SCOPE: UNIT-TEST

Common problems:
-Code in legacy systems
-Class dependencies
-Misused as Mini-integration 
tests

Thursday, September 9, 2010



UNIT-TESTS

Finding the scope of a unit test

Thursday, September 9, 2010



UNIT TESTING WORKFLOW

Demo:  A plain JUnit Test grows 
into a PDE Test
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A COMMON 
MISUNDERSTANDING

PDE Tests allow execution of code in the product scope

I want to write a Unit Test

PDE Tests are the Eclipse way to write unit tests

I’ll just write an integration test
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THE MISUNDERSTOOD PDE 
TEST

PDE Test

Product

Network Database
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THE MISUNDERSTOOD PDE 
TEST

PDE Test

Product

Network Database

This is no 
Unit Test!
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UNIT TEST

• A unit is a small chunk of code

• Should be tested independent from other code

• That’s not always possible, especially in systems that where not 
created test driven
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A SOFTWARE UNIT
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INTERCEPTION POINTS

An Interception Point is a point in your program where 
you can detect the effects of a particular change. (Michael 
Feathers, Working Effectively with Legacy Code)
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INTERCEPTION POINT
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INTERCEPTION POINT

•The method on the previous slide needs some changes.

•On the way it shall be refactored into this method:
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EFFECTS OF GETVALUE

• getValue() will change.

• The only use is in another class BillingStatement

getValue

BillingStatement.makeStatement
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EFFECTS ON GETVALUE
• Several other things will change that affect getValue.

getValue

constructor

shippingPricer
creates
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A CHAIN OF EFFECTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement
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INTERCEPTION POINTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement
interception 

point

interception 
point

interception 
point

interception 
point
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CHANGE POINTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement

change point

change point

change point

interception 
point

interception 
point

interception 
point

interception 
point
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INTERCEPTION POINTS

• Pick your interception point close to the change points

• Safety: Every step between a change point and an 
interception point is like a logical argument

• Practicability: In general (not always) it’s harder to set 
up interception points that are far away

• Maintainability:  Your tests serve as regression tests.  You 
don’t want to observe more effects than necessary.
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A JUNIT FEATURE

JUnit Rules
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JUNIT RULES

• Rules have been (unnoticed) in JUnit for a while (since 4.7)

• A simple way to get code run before and after the test

• In the past, test runners where used for that
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TEMPORARYFOLDER

• A rule is a field, annotated with @Rule

• must be public 
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PREDEFINED RULES

• JUnit comes with a few rules predefined

• TemporaryFolder - Provides files that live as long as the test

• ExpectedException - A replacement for @Test(expected=...)

• TestName - Provides access to the test name

• Timeout - A replacement for @Test(timeout=...)

• ErrorCollector - Collect test failures instead of failing at the 
first error
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CREATING A RULE

• Creating a rule is done by implementing 
org.junit.rules.MethodRule

• If you simply want to execute something before and after a 
test method, extend 
org.junit.rules.ExternalResource
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A RULE FOR TESTS WITH SWT
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INTERCEPTION POINTS

Demo: Testing View code 
without workbench
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UNIT TESTS IN THE 
CONTINUOUS INTEGRATION

• If set up correctly, Unit tests generally can run as PDE tests

• Set up a test suite that runs all Unit and PDE tests as PDE 
tests

• Alternative: Put all the plug-ins on the java classpath and run 
the JUnit Tests in a normal Java environment (common 
solution in OSGi and RAP applications)
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SCOPE: INTEGRATION TEST
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SCOPE: INTEGRATION TESTS

Advantage:
✓Regression tests on a scope 
where you don’t execute on a 
per-day basis
✓High trust factor
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PDE TEST AS INTEGRATION 
TEST

PDE Test

Product

Network Database
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PDE TEST AS INTEGRATION 
TEST

PDE Test

Product

Network Database

OSGi Container

✓  ✓  
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PDE TEST AS INTEGRATION 
TEST

• Common problems:

- A PDE Test can’t do much more than verify that a 
configuration exists

- Setting external resources up (and cleaning them up) often 
must be done external
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COMMON SOLUTIONS

• Common solutions for integration tests include

✓ Having a fixed test user/test data in the development 
database

✓ Scripts that can set up and tear down the environment

- Hard to set up and maintain
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SCOPE: FUNCTIONAL TEST
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FUNCTIONAL TESTS

Advantage:
✓Test on the same abstraction 
level as the user sees it
✓High trust factor
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SCOPE: FUNCTIONAL TESTS

Common problems:
-Which tool is the right one?
-Executing in IDE vs automated 
environment
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FUNCTIONAL TEST TYPES

• Functional tests can be created through

• Programming

• Capture/Refactor/Replay

• In any case you need another tool than plain JUnit/PDE Test
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SWTBOT

• SWTBot finds SWT Widgets 

• It provides an API for using widgets as if you where a user

• http://www.eclipse.org/swtbot/
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SWTBOT

Demo: SWTBot Test Case
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ACCESS TO CODE

• The code for the Rule CaptureScreenshotOnFailure can be 
found at http://eclipsesource.com/blogs/2010/09/09/capture-
screenshot-on-failing-swtbot-tests/
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WHY NOT FUNCTIONAL 
TESTS?

• Good Unit-Tests can achieve >80% code coverage

• With a careful design, all controller and model logic can be 
tested

• You won’t be able to test Layouting with functional tests
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WHY FUNCTIONAL TESTS

• Is the controller logic attached to the UI?

• Are various code units connected?

• Regression tests for tricky passages
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PROPERTIES OF FUNCTIONAL 
TESTS

• Functional tests are several orders of magnitude slower than 
unit tests

• Immediate feedback almost impossible

• Interception points for functional tests are far away from the 
actual code

• Nothing (automated) is closer to the user experience
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TEST PROJECT STRUCTURE

Test Setup in RCP Application
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SETUP IN RCP APPLICATIONS

•We don’t want to ship JUnit 
with the application
•We want to use PDE tests and 
the Eclipse Testing Framework
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TESTS IN SEPARATE BUNDLES

Bundle A
Test 

Bundle

Bundle B

JUnit
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TESTS IN SEPARATE BUNDLES

• Advantages:

✓ A Test plug-in for a bunch of bundles

✓ Separate plug-in for Unit Tests

✓ Rather easy to set up and maintain plug-in structure
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TESTS IN SEPARATE BUNDLES

• Consequences:

-  Hard to access internal classes (need to be exported)

-  Every method under test must be public
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USES IN RCP APPLICATIONS
• Works well to some extend

• You’ll find a lot of code like this:
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USES IN RCP APPLICATIONS
• Works well to some extend

• You’ll find a lot of code like this:

• Or worse, like this:
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USES IN RCP APPLICATIONS

• Your Manifest.mf contains a lot entries like this:
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TESTS IN FRAGMENTS

Bundle A
Test 

Fragment A

Bundle B

JUnit

Test 
Fragment B
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TESTS IN FRAGMENTS

• Advantages:

✓ No classloader between test and class

➡ We can narrow down the visibility to default
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TESTS IN FRAGMENTS

• Consequences:

- Every bundle needs a separate test fragment

- Creating and integrating bundles in the application becomes 
a heavy-weight task

- Especially the initial setup frightens off developers
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Test FeatureProduct

TESTS IN SEPARATE ARTIFACTS

Bundle A
Test 

Fragment A

Bundle B

JUnit

Test 
Fragment B
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CONTINUOUS INTEGRATION 
CONCERNS

• Executing Tests requires:

• The RCP Application

• The Test Feature

• Eclipse Testing Framework

• JDT + Requirements (This will likely vanish in 3.7)
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CONTINUOUS INTEGRATION 
CONCERNS

• In practice, sometimes tests don’t get executed because of 
changed dependencies

• Hard to find out why

➡ Use p2 to install the tests into the product
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TESTS IN THE PLUG-IN

Bundle A
& Tests

Bundle B
& Tests

JUnit

optional

optional
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TESTS IN THE PLUG-IN

• Advantages:

✓ No test dependency management overhead 
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TESTS IN THE PLUG-IN

• Consequences:

- Tests ship with the product

- Hazzles with test/productive code interdependencies
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USES IN OSGI APPLICATIONS

• This is a common structure for OSGi projects

• Not so common in RCP applications
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TEST SUITE

• Don’t try to set up a Test Suite across different bundles 
yourself.

• There’ll be another talk about test suites later today

• Bundle Testcollector from Patrick Paulin makes it easy to set 
up Test Suites in an OSGi container
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BUNDLE TESTCOLLECTOR

• Bundle Testcollector Input

• pattern for bundle id

• pattern for class name

• Goes through the specified bundles, pulls together the classes 
and puts them on a PDE test suite

• http://www.modumind.com/2008/06/12/running-unit-tests-for-
rcp-and-osgi-applications/
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BUNDLE TESTCOLLECTOR

• Small problem:

• The Bundle Testcollector is only able to construct JUnit3 Test 
Suites

• A small change is necessary to make it compatible with 
JUnit4 tests (wrap the found class in a JUnit4TestAdapter).
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TEST SUITE

Demo: Setting up a Test Suite 
with BundleTestCollector
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TEST SUITES

• Structure your test suites by execution speed and Test 
Runners

• SWTBot tests need a separate test runner 

• Unit tests are meant to be fast, developers will execute 
them regularly

• Integration tests may take a while, they will mainly be 
executed in the continuous integration
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ACCESS TO CODE

The Bundle Testcollector that was demonstrated can be 
accessed at http://eclipsesource.com/blogs/2010/09/09/an-
almost-perfect-test-suite/
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CONCLUSION

•Use the tools at hand
•Efficient testing comes with 
differentiation and structure
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