
FINDING THE SCOPE
Patterns and best practices for testing

Eclipse RCP Applications

Matthias Kempka (mkempka@eclipsesource.com)
Thursday, September 9, 2010

mailto:mkempka@eclipsesource.com
mailto:mkempka@eclipsesource.com

Why is testing RCP Applications
a topic?

Thursday, September 9, 2010

WHAT IS A SCOPE?

Thursday, September 9, 2010

WHAT IS A SCOPE?

AND WHY IS IT IMPORTANT?

Thursday, September 9, 2010

SCOPE: UNIT-TEST

Thursday, September 9, 2010

SCOPE: UNIT-TESTS

Advantage:
✓Testing on method/class scope
✓Easy to execute in IDE
✓Fast

Thursday, September 9, 2010

SCOPE: UNIT-TEST

Common problems:
-Code in legacy systems
-Class dependencies
-Misused as Mini-integration
tests

Thursday, September 9, 2010

UNIT-TESTS

Finding the scope of a unit test

Thursday, September 9, 2010

UNIT TESTING WORKFLOW

Demo: A plain JUnit Test grows
into a PDE Test

Thursday, September 9, 2010

A COMMON
MISUNDERSTANDING

PDE Tests allow execution of code in the product scope

I want to write a Unit Test

PDE Tests are the Eclipse way to write unit tests

I’ll just write an integration test

Thursday, September 9, 2010

THE MISUNDERSTOOD PDE
TEST

PDE Test

Product

Network Database

Thursday, September 9, 2010

THE MISUNDERSTOOD PDE
TEST

PDE Test

Product

Network Database

This is no
Unit Test!

Thursday, September 9, 2010

UNIT TEST

• A unit is a small chunk of code

• Should be tested independent from other code

• That’s not always possible, especially in systems that where not
created test driven

Thursday, September 9, 2010

A SOFTWARE UNIT

Thursday, September 9, 2010

INTERCEPTION POINTS

An Interception Point is a point in your program where
you can detect the effects of a particular change. (Michael
Feathers, Working Effectively with Legacy Code)

Thursday, September 9, 2010

INTERCEPTION POINT

Thursday, September 9, 2010

INTERCEPTION POINT

•The method on the previous slide needs some changes.

•On the way it shall be refactored into this method:

Thursday, September 9, 2010

EFFECTS OF GETVALUE

• getValue() will change.

• The only use is in another class BillingStatement

getValue

BillingStatement.makeStatement

Thursday, September 9, 2010

EFFECTS ON GETVALUE
• Several other things will change that affect getValue.

getValue

constructor

shippingPricer
creates

Thursday, September 9, 2010

A CHAIN OF EFFECTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement

Thursday, September 9, 2010

INTERCEPTION POINTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement
interception

point

interception
point

interception
point

interception
point

Thursday, September 9, 2010

CHANGE POINTS

getValue

constructor

shippingPricer
creates

BillingStatement.makeStatement

change point

change point

change point

interception
point

interception
point

interception
point

interception
point

Thursday, September 9, 2010

INTERCEPTION POINTS

• Pick your interception point close to the change points

• Safety: Every step between a change point and an
interception point is like a logical argument

• Practicability: In general (not always) it’s harder to set
up interception points that are far away

• Maintainability: Your tests serve as regression tests. You
don’t want to observe more effects than necessary.

Thursday, September 9, 2010

A JUNIT FEATURE

JUnit Rules

Thursday, September 9, 2010

JUNIT RULES

• Rules have been (unnoticed) in JUnit for a while (since 4.7)

• A simple way to get code run before and after the test

• In the past, test runners where used for that

Thursday, September 9, 2010

TEMPORARYFOLDER

• A rule is a field, annotated with @Rule

• must be public

Thursday, September 9, 2010

PREDEFINED RULES

• JUnit comes with a few rules predefined

• TemporaryFolder - Provides files that live as long as the test

• ExpectedException - A replacement for @Test(expected=...)

• TestName - Provides access to the test name

• Timeout - A replacement for @Test(timeout=...)

• ErrorCollector - Collect test failures instead of failing at the
first error

Thursday, September 9, 2010

CREATING A RULE

• Creating a rule is done by implementing
org.junit.rules.MethodRule

• If you simply want to execute something before and after a
test method, extend
org.junit.rules.ExternalResource

Thursday, September 9, 2010

A RULE FOR TESTS WITH SWT

Thursday, September 9, 2010

INTERCEPTION POINTS

Demo: Testing View code
without workbench

Thursday, September 9, 2010

UNIT TESTS IN THE
CONTINUOUS INTEGRATION

• If set up correctly, Unit tests generally can run as PDE tests

• Set up a test suite that runs all Unit and PDE tests as PDE
tests

• Alternative: Put all the plug-ins on the java classpath and run
the JUnit Tests in a normal Java environment (common
solution in OSGi and RAP applications)

Thursday, September 9, 2010

SCOPE: INTEGRATION TEST

Thursday, September 9, 2010

SCOPE: INTEGRATION TESTS

Advantage:
✓Regression tests on a scope
where you don’t execute on a
per-day basis
✓High trust factor

Thursday, September 9, 2010

PDE TEST AS INTEGRATION
TEST

PDE Test

Product

Network Database

Thursday, September 9, 2010

PDE TEST AS INTEGRATION
TEST

PDE Test

Product

Network Database

OSGi Container

✓ ✓

Thursday, September 9, 2010

PDE TEST AS INTEGRATION
TEST

• Common problems:

- A PDE Test can’t do much more than verify that a
configuration exists

- Setting external resources up (and cleaning them up) often
must be done external

Thursday, September 9, 2010

COMMON SOLUTIONS

• Common solutions for integration tests include

✓ Having a fixed test user/test data in the development
database

✓ Scripts that can set up and tear down the environment

- Hard to set up and maintain

Thursday, September 9, 2010

SCOPE: FUNCTIONAL TEST

Thursday, September 9, 2010

FUNCTIONAL TESTS

Advantage:
✓Test on the same abstraction
level as the user sees it
✓High trust factor

Thursday, September 9, 2010

SCOPE: FUNCTIONAL TESTS

Common problems:
-Which tool is the right one?
-Executing in IDE vs automated
environment

Thursday, September 9, 2010

FUNCTIONAL TEST TYPES

• Functional tests can be created through

• Programming

• Capture/Refactor/Replay

• In any case you need another tool than plain JUnit/PDE Test

Thursday, September 9, 2010

SWTBOT

• SWTBot finds SWT Widgets

• It provides an API for using widgets as if you where a user

• http://www.eclipse.org/swtbot/

Thursday, September 9, 2010

SWTBOT

Demo: SWTBot Test Case

Thursday, September 9, 2010

ACCESS TO CODE

• The code for the Rule CaptureScreenshotOnFailure can be
found at http://eclipsesource.com/blogs/2010/09/09/capture-
screenshot-on-failing-swtbot-tests/

Thursday, September 9, 2010

WHY NOT FUNCTIONAL
TESTS?

• Good Unit-Tests can achieve >80% code coverage

• With a careful design, all controller and model logic can be
tested

• You won’t be able to test Layouting with functional tests

Thursday, September 9, 2010

WHY FUNCTIONAL TESTS

• Is the controller logic attached to the UI?

• Are various code units connected?

• Regression tests for tricky passages

Thursday, September 9, 2010

PROPERTIES OF FUNCTIONAL
TESTS

• Functional tests are several orders of magnitude slower than
unit tests

• Immediate feedback almost impossible

• Interception points for functional tests are far away from the
actual code

• Nothing (automated) is closer to the user experience

Thursday, September 9, 2010

TEST PROJECT STRUCTURE

Test Setup in RCP Application

Thursday, September 9, 2010

SETUP IN RCP APPLICATIONS

•We don’t want to ship JUnit
with the application
•We want to use PDE tests and
the Eclipse Testing Framework

Thursday, September 9, 2010

TESTS IN SEPARATE BUNDLES

Bundle A
Test

Bundle

Bundle B

JUnit

Thursday, September 9, 2010

TESTS IN SEPARATE BUNDLES

• Advantages:

✓ A Test plug-in for a bunch of bundles

✓ Separate plug-in for Unit Tests

✓ Rather easy to set up and maintain plug-in structure

Thursday, September 9, 2010

TESTS IN SEPARATE BUNDLES

• Consequences:

- Hard to access internal classes (need to be exported)

- Every method under test must be public

Thursday, September 9, 2010

USES IN RCP APPLICATIONS
• Works well to some extend

• You’ll find a lot of code like this:

Thursday, September 9, 2010

USES IN RCP APPLICATIONS
• Works well to some extend

• You’ll find a lot of code like this:

• Or worse, like this:

Thursday, September 9, 2010

USES IN RCP APPLICATIONS

• Your Manifest.mf contains a lot entries like this:

Thursday, September 9, 2010

TESTS IN FRAGMENTS

Bundle A
Test

Fragment A

Bundle B

JUnit

Test
Fragment B

Thursday, September 9, 2010

TESTS IN FRAGMENTS

• Advantages:

✓ No classloader between test and class

➡ We can narrow down the visibility to default

Thursday, September 9, 2010

TESTS IN FRAGMENTS

• Consequences:

- Every bundle needs a separate test fragment

- Creating and integrating bundles in the application becomes
a heavy-weight task

- Especially the initial setup frightens off developers

Thursday, September 9, 2010

Test FeatureProduct

TESTS IN SEPARATE ARTIFACTS

Bundle A
Test

Fragment A

Bundle B

JUnit

Test
Fragment B

Thursday, September 9, 2010

CONTINUOUS INTEGRATION
CONCERNS

• Executing Tests requires:

• The RCP Application

• The Test Feature

• Eclipse Testing Framework

• JDT + Requirements (This will likely vanish in 3.7)

Thursday, September 9, 2010

CONTINUOUS INTEGRATION
CONCERNS

• In practice, sometimes tests don’t get executed because of
changed dependencies

• Hard to find out why

➡ Use p2 to install the tests into the product

Thursday, September 9, 2010

TESTS IN THE PLUG-IN

Bundle A
& Tests

Bundle B
& Tests

JUnit

optional

optional

Thursday, September 9, 2010

TESTS IN THE PLUG-IN

• Advantages:

✓ No test dependency management overhead

Thursday, September 9, 2010

TESTS IN THE PLUG-IN

• Consequences:

- Tests ship with the product

- Hazzles with test/productive code interdependencies

Thursday, September 9, 2010

USES IN OSGI APPLICATIONS

• This is a common structure for OSGi projects

• Not so common in RCP applications

Thursday, September 9, 2010

TEST SUITE

• Don’t try to set up a Test Suite across different bundles
yourself.

• There’ll be another talk about test suites later today

• Bundle Testcollector from Patrick Paulin makes it easy to set
up Test Suites in an OSGi container

Thursday, September 9, 2010

BUNDLE TESTCOLLECTOR

• Bundle Testcollector Input

• pattern for bundle id

• pattern for class name

• Goes through the specified bundles, pulls together the classes
and puts them on a PDE test suite

• http://www.modumind.com/2008/06/12/running-unit-tests-for-
rcp-and-osgi-applications/

Thursday, September 9, 2010

http://www.modumind.com/2008/06/12/running-unit-tests-for-rcp-and-osgi-applications/
http://www.modumind.com/2008/06/12/running-unit-tests-for-rcp-and-osgi-applications/
http://www.modumind.com/2008/06/12/running-unit-tests-for-rcp-and-osgi-applications/
http://www.modumind.com/2008/06/12/running-unit-tests-for-rcp-and-osgi-applications/

BUNDLE TESTCOLLECTOR

• Small problem:

• The Bundle Testcollector is only able to construct JUnit3 Test
Suites

• A small change is necessary to make it compatible with
JUnit4 tests (wrap the found class in a JUnit4TestAdapter).

Thursday, September 9, 2010

TEST SUITE

Demo: Setting up a Test Suite
with BundleTestCollector

Thursday, September 9, 2010

TEST SUITES

• Structure your test suites by execution speed and Test
Runners

• SWTBot tests need a separate test runner

• Unit tests are meant to be fast, developers will execute
them regularly

• Integration tests may take a while, they will mainly be
executed in the continuous integration

Thursday, September 9, 2010

ACCESS TO CODE

The Bundle Testcollector that was demonstrated can be
accessed at http://eclipsesource.com/blogs/2010/09/09/an-
almost-perfect-test-suite/

Thursday, September 9, 2010

http://eclipsesource.com/blogs/2010/09/09/an-almost-perfect-test-suite/
http://eclipsesource.com/blogs/2010/09/09/an-almost-perfect-test-suite/
http://eclipsesource.com/blogs/2010/09/09/an-almost-perfect-test-suite/
http://eclipsesource.com/blogs/2010/09/09/an-almost-perfect-test-suite/

CONCLUSION

•Use the tools at hand
•Efficient testing comes with
differentiation and structure

Thursday, September 9, 2010

REFERENCES

• Michael C. Feathers, Working Effectively with Legacy code

• http://eclipse.org/swtbot

Thursday, September 9, 2010

http://eclipse.org/swtbot
http://eclipse.org/swtbot

