
Introduction to the
Eclipse Parallel Tools Platform

Slides by
Greg Watson, Beth Tibbitts,

Jay Alameda, Galen Arnold, Steve Brandt, Chris Navarro, Jeff Overbey, and Wyatt Spear

Jay Alameda, NCSA
jalameda@ncsa.illinois.edu

Jeff Overbey, Auburn U.
jeffreyoverbey@acm.org

Portions of this material are supported by or based upon work supported by
• The Defense Advanced Research Projects Agency (DARPA) under its Agreement No.

HR0011-07-9-0002
• The Blue Waters sustained-petascale computing project, which is supported by the National

Science Foundation (award number OCI 07-25070)
• The United States Department of Energy under Contract No. DE-FG02-06ER25752
• The SI2-SSI Productive and Accessible Development Workbench for HPC Applications,

which is supported by the National Science Foundation under award number OCI 1047956

July 27, 2015

Tutorial Outline
Time

(Tentative)
Module Topics Presenter

1:30-2:00 Eclipse Installation
Intro/Overview

 Installation of Eclipse and PTP
 Eclipse overview

Jeff/Jay

2:00-2:45 Eclipse basics Synchronized projects
 Git support
 Editor features

Jeff

2:45-3:15 BREAK

3:15-3:30 (continue Basics) Jeff

3:30-4:30 Build & Run (1:00) GUI terminal
 Building with Make
 Target system configurations
 Launching a parallel application
 Modules/environment mgmt
 Wrap-up

Jay

Installation instructions (and these slides) are available at
http://wiki.eclipse.org/PTP/tutorials/XSEDE15

Final Slides, Installation
Instructions

Please go to
http://wiki.eclipse.org/PTP/tutorial
s/XSEDE15 for slides and
installation instructions
Local copy of downloads:

http://dns.conference.xsede.org/

Installation

Objective
 To learn how to install Eclipse and PTP

 Contents
 System Prerequisites
 Eclipse Download and Installation of “Eclipse for

Parallel Application Developers”
 Installation Confirmation
Updating the PTP within your Eclipse to the latest

release

Installation Install-1

System Prerequisites
 Local system (running Eclipse)

 Linux (just about any version)
MacOSX (10.5 Leopard or higher)
Windows (XP on)

 Java: Eclipse requires Sun or IBM Java
Only need Java runtime environment (JRE)
 Java 1.7 or higher

Java 1.7 is the same as JRE Version 7
 The GNU Java Compiler (GCJ), which comes standard

on Linux, will not work!
OpenJDK, distributed with some Linux distributions,

comes closer to working, but should not be used.
 See http://wiki.eclipse.org/PTP/installjava

Install-2Installation

Eclipse Packages
 The current version of Eclipse (4.5) is also

known as “Mars”
 Eclipse is available in a number of different

packages for different kinds of development
 http://eclipse.org/downloads

 For PTP, we recommend the all-in-one
download:
 Eclipse for Parallel Application Developers

We often call this the “Parallel Package”

Install-3Installation

New! See
next slide
for update

New! Parallel Package updated
 The public Parallel Package on eclipse.org/downloads is only

updated three times yearly
 We are now building updated all-in-one packages with new

releases of PTP already installed.
 You can use this, or just update the original one

 See next slides for updating…
To use already-updated package:
 Go to http://eclipse.org/ptp/downloads.php
 Under File Downloads:
 Click on the link, and on the file downloads page, see

Parallel Application Developers Package and download
the appropriate file for your platform
 Mac OS X
 Linux X86 and X86_64
 Windows x86 and x86_64

 Unzip or untar it
Install-4Installation

Exercise

1. Download the “Eclipse for Parallel Application
Developers” package to your laptop
 Your tutorial instructions will provide the location of

the package
 Make sure you match the architecture with that of

your laptop
2. If your machine is Linux or Mac OS X, untar

the file
 On Mac OS X you can just double-click in the Finder

3. If your machine is Windows, unzip the file
4. This creates an eclipse folder containing the

executable as well as other support files and
folders

Install-5Installation

Starting Eclipse
 Linux

 From a terminal window, enter
“<eclipse_installation_path>/eclipse/eclipse &”

 Mac OS X
 From finder, open the eclipse folder where you installed
 Double-click on the Eclipse application
 Or from a terminal window

 Windows
 Open the eclipse folder
 Double-click on the eclipse executable

Install-6Installation

 Eclipse prompts for a workspace location at
startup time

 The workspace contains all user-defined data
 Projects and resources such as folders and files
 The default workspace location is fine for this tutorial

Specifying A Workspace

The prompt can be
turned off

Install-7Installation

Eclipse Welcome Page

Displayed when Eclipse is run for the first time
Select “Workbench”

Install-8
Installation

Checking for PTP Updates

 From time-to-time there may be newer PTP
releases than the Mars release
Mars and “Parallel package” updates are released only

in September and February

 PTP maintains its own update site with the
most recent release
 Bug fix releases can be more frequent than base

Eclipse (e.g. Luna), and what is within the parallel
package

 You must enable (and install from) the PTP-
specific update site before the updates will be
found

Install-9Installation

Updating PTP
 Now select Help>Install New Software…

 In the Work With: dropdown box, select this update site,
or enter it:
http://download.eclipse.org/tools/ptp/updates/mars

Install-10Installation

Updating PTP (2)

 Easiest option is to “Select All” - which updates existing
PTP features and adds a few more

Note: for this tutorial, this installs extra features we’ll
refer to later anyway (TAU, PerfSuite)

 Select Next to continue updating PTP
 Select Next to confirm features to install

Install-11Installation

Updating PTP (3)

 Accept the License agreement and select Finish

Install-12Installation

Updating PTP - restart

 Select Yes when prompted to restart Eclipse

Install-13Installation

Updating Individual Features

 It’s also possible (but a bit tedious) to update all the PTP
features without adding any new features
 Open each feature and check the ones you want to update

 Icons indicate: Grey plug: already installed
Double arrow: can be updated
Color plug: Not installed yet

 Note: if network is slow, consider unchecking:

Install-14Installation

Restart after Install
 If any new top-level features

are installed, they will be
shown on the welcome screen

 We only updated PTP, so we
land back at C/C++
Perspective

Install-15Installation

 Help>About or Eclipse > About Eclipse …
will indicate the release of PTP installed

 Further Help>Check for Updates will find future updates on
the PTP Update site

Exercise

1. Launch Eclipse and select the default
workspace

2. Configure Eclipse to check for PTP updates
3. Update all PTP features to the latest level
4. Install the optional features of PTP, including

TAU and PerfSuite
– Selecting all features accomplishes 3. and 4.

5. Restart Eclipse once the installation is
completed

Install-16Installation

Intro-0Introduction

Introduction

Objective
 To introduce the Eclipse platform and PTP

 Contents
 New and Improved Features
What is Eclipse?
What is PTP?

Intro-1

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

Introduction

Intro-2

Eclipse Features

 Full development lifecycle support
 Revision control integration (CVS, SVN, Git)
 Project dependency management
 Incremental building
 Content assistance
 Context sensitive help
 Language sensitive searching
Multi-language support
 Debugging

Introduction

Intro-3

Parallel Tools Platform (PTP)

 The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

 Features include:
 An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

 A scalable parallel debugger
 Parallel programming tools

(MPI, OpenMP, UPC, etc.)
 Support for the integration

of parallel tools
 An environment that simplifies the

end-user interaction with parallel systems
 http://www.eclipse.org/ptp

Introduction

Eclipse PTP Family of Tools
Coding & Analysis

(C, C++, Fortran)

Parallel Debugging

Launching &
Monitoring

Performance Tuning
(TAU, PerfSuite, …) Intro-4Introduction

How Eclipse is Used

Intro-5

Remote
Source
Code

Introduction

Local
Source
Code

Edit/Build

Launch/Monitor

Debugging

Performance Tuning

Eclipse Basics
Objective

 Learn about basic Eclipse workbench concepts:
projects,

 Learn about projects: local, synchronized, remote
 Contents

Workbench components: Perspectives, Views, Editors
 Local, remote, and synchronized projects
 Learn how to create and manage a C project
 Learn about Eclipse editing features

Eclipse Basics Basic-0

Eclipse Basics
 A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspectiveEclipse Basics

view
view

view

editor

 The workbench represents
the desktop development
environment
 Contains a set of tools

for resource mgmt
 Provides a common way

of navigating through
the resources

 Multiple workbenches
can be opened at the
same time

 Only one workbench can
be open on a workspace
at a time

Basic-1

Perspectives

 Perspectives define the layout of views and
editors in the workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 C/C++ Perspective for manipulating compiled code
Debug Perspective for debugging applications
 System Monitoring Perspective for monitoring

jobs
 You can easily switch between perspectives
 If you are on the Welcome screen now, select

“Go to Workbench” now

Eclipse Basics Basic-2

Switching Perspectives

 Three ways of changing
perspectives

1. Choose the Window>Open
Perspective menu option
Then choose Other…

2. Click on the Open Perspective button in the
upper right corner of
screen (hover over it to
see names)

3. Click on a
perspective
shortcut button

Eclipse Basics Basic-3

Which Perspective?

Eclipse Basics Basic-4

 The current perspective is displayed in the title
bar

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
Menu actions only

apply to the view
 Views can be resized

view

view view

Eclipse Basics Basic-5

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

Eclipse Basics Basic-6

Expand a View

 Double-click on a view/editor’s tab to fill the
workbench with its content;

 Repeat to return to original size

Window > Reset Perspective
returns everything to original positions

Basic-7Eclipse Basics

Double
click

Double
click

Help

 To access help
 Help>Help Contents
 Help>Search
 Help>Dynamic Help

 Help Contents provides
detailed help on different
Eclipse features in a
browser

 Search allows you to
search for help locally, or
using Google or the Eclipse
web site

 Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Eclipse Basics Basic-8

Eclipse Preferences
 Eclipse Preferences allow

customization of almost
everything

 To open use
 Mac: Eclipse>Preferences…
 Others:

Window>Preferences…

 The C/C++ preferences
allow many options to be
altered

 In this example you can
adjust what happens in
the editor as you type.

Eclipse Basics Basic-9

Preferences Example
More C/C++ preferences:
In this example the

Code Style preferences
are shown
 These allow code to be

automatically
formatted in different
ways

Eclipse Basics Basic-10

Exercise
1. Change to a different perspective
2. Experiment with moving and resizing views

 Move a view from a stack to beside another view
 Expand a view to maximize it; return to original size

3. Save the perspective
4. Reset the perspective
5. Open Eclipse preferences
6. Search for “Launching”

7. Make sure the “Build (if required) before
launching” setting is disabled

Eclipse Basics Basic-11

Optional Exercise
Best performed after learning about projects, CVS, and editors

1. Use source code formatting to format a source file, or a region
of a source file
 Use Source>Format menu

2. In Eclipse Preferences, change the C/C++ source code style
formatter, e.g.
 Change the indentation from 4 to 6
 Make line wrapping not take effect until a line has a

maximum line width of 120, instead of the default 80
 Save a (new) profile with these settings
 Format a source file with these settings

3. Revert the file back to the original – experiment with
 Replace with HEAD, replace with previous from local history,

or reformat using original style

Eclipse Basics Basic-12

Creating a Synchronized Project
Objective

 Learn how to create and use synchronized projects
 Learn how to create a sync project
From a source code repository in Git

 Contents
 Eclipse project types
 Clone a git repository; create a synchronized project
 Using synchronize filters
 Remote Terminal view

Synchronized Projects Sync-0

Project Location
 Local

 Source is located on local machine, builds happen locally
 This is the default Eclipse model

 Synchronized
 Source is located on both local and remote machine(s),

then kept in synchronization by Eclipse
 Building and launching happens remotely

(can also happen locally)
 Used mainly for scientific and supercomputing

applications
 There are also remote-only projects, but these

have limitations and are not covered here

Synchronized Projects Sync-1

Sync-2

Synchronized Projects
 Projects types can be:

-2

File Service Index Service

Launch Service

Build Service

Debug Service

Local source
code

Source code
copy

Local Remote

Compute

Edit Search/Index
Navigation

Synchronize

Executable

Synchronized Projects

Static
Analysis

Revision Control Systems
(Source Code Repositories)

 Eclipse supports a range of revision control
systems, such as CVS, Git, and Subversion (and
others)

 These are distinct from synchronized projects
 Revision control systems can be used in

conjunction with synchronized projects
 Synchronized projects are typically not used for

revision control

Synchronized Projects Sync-3

Sync-4

Synchronized Project Creation
 Local -> Remote

 Projects start out local then are synchronized to a
remote machine

 Three options
 Created from scratch
 Imported from local filesystem
 Imported from source code repository (Git) <- this tutorial

 Remote -> Local
 Projects start out on remote machine then are

synchronized to the local system
 Two options

 Already on remote system
 Checked out from source code repository

-4Synchronized Projects

Sync-5

C, C++, and Fortran Projects
Build types

Makefile-based
 Project contains its own build command – typically a

makefile (or makefiles) for building the application –
but can be any build scripts, etc.

Managed
 Eclipse manages the build process, no makefile

required by the user

-5Synchronized Projects

Create Synchronized project on the local machine
at the same time.

Two steps:

Sync-6Synchronized
Projects

Check out source code
from Git repository

 Clone Git Repo
 Create project files from within the clone

Clone the git repo

Sync-7Synchronized
Projects

Open Git perspective
Window > Perspective
> Open Perspective >
Other

 Select Git

 In the view, select
Clone a Git repository one of two ways

Clone a Git repository
and add the clone to this
view

If there are no git repos yet
you will see this:

Specify remote git repo location
 URI: https://github.com/xsede14/ptp-tutorial.git

 Fill in URI and
other
fields fill
themselves

 Select Next>

Sync-8Synchronized
Projects

Finish git cloning

Sync-9

 Select Next> to choose the (only) branch
 Then select Finish> to use the default git

destination (Remember this, you’ll need it later)

Synchronized
Projects

Remember:

Import project from cloned repo

 After repo is cloned, expand ptp-tutorial and Working
Directory

 We are importing only
one project

 Select shallow

 Right mouse,
Import Projects…

Sync-10Synchronized
Projects

Create new project with wizard

 Select Use the New Project Wizard to be
able to create the project as a Synchronized
C/C++ project at creation

 Select Finish
to finish the git
cloning, and you
will be taken to
Sync project
info next.

Sync-11Synchronized
Projects

New Project Wizard

Sync-12Synchronized Projects

We are creating the project
directly as a Synchronized
C/C++ project

 Expand Other
 Select

Synchronized
C/C++ Project

 Select Next>

Synchronized Projects Sync-13

 Enter the Project Name
 E.g. “shallow”

 Next we will specify the Local
Directory where the local files
are located (cloned from git)
 Files are synchronized here, and we

will edit them locally

 …and the Remote Directory
where the remote files are located
 Our remote target machine,

where we will build, run, & debug

 Use Modify File Filtering… if required
(see later slide)

New Synchronized Project Wizard

See Next slides…

Local and remote directories
1. For Local directory,

NOTE: Uncheck Use default
location
and browse to the location you
chose for git repo
- the shallow dir beneath that

2. To specify the Remote directory,
first Create a connection to the
remote target machine by
selecting New…

Sync-14Synchronized
Projects

Creating a Connection

 In the New
Connection dialog
 Enter a Connection

name
for the remote host

 Enter host name,
user name,
and user password
or
other credentials

 Select Finish

Sync-15Synchronized Projects

Specifying the remote directory
 After the connection has been specified,

back in the New Synchronized Project window..

 For Remote directory, you can enter
its location. If it does not
exist, it will be created.

 If the remote dir exists, you can select
it with the Browse… Note that this
is the first time that the Connection
information is utilized.

 Later slides in this section show
how to fix Connection
if e.g. password or userid are
entered incorrectly

Sync-16Synchronized
Projects

Sync-17

 Choose the Project Type
 This tutorial’s code has its own makefile,

so use
Makefile Project>Empty Project

 Otherwise, choose the type of project
you want to create

 Choose toolchain for remote build
 Use a toolchain that most closely

matches the remote system

 Choose a toolchain for the local
build (OPTIONAL)
 This is optional if you don’t plan to build

on the local machine
 This is used for advanced

editing/searching

 Click Finish to create the project

Project Type & Toolchain

 You should now see the “shallow” project in your
workspace

 Project is synchronized
with remote host

Project successfully created

Sync-18

Expand the
project root
to see the
project’s
contents

Synchronized Projects

Status area in lower right
shows Synchronization
progress:

Synchronized Project

 Back in the Project
Explorer, decorator on
project icon indicates
synchronized project

 Double-+ icon

 C Project w/o Sync

 Synchronized Project

Sync-19Synchronized Projects

Synchronize Filters

 If not all files in the remote project should be
synchronized, a filter can be set up
 For example, it may not be desirable to synchronize

binary files, or large data files
 Filters can be created at the same time as the

project is created
 Click on the Modify File Filtering… button in the

New Project wizard
 Filters can be added later

 Right click on the project and select
Synchronize>Filter…

Sync-20Synchronized Projects

Synchronize Filter Dialog

 Files can be filtered individually
by selecting/unselecting them in
the File View at the top

 Include or exclude files based on
paths and expressions

 Suggestion: add filter for
‘shallow’ so the executable, built
on remote machine, doesn’t get
synced back

Sync-21Synchronized Projects

Synchronized Project Properties
 Synchronized configurations

can be managed through the
project properties

 Open the project properties
by right-clicking on the
project and selecting
Properties
 Select Synchronize

 This is the same as using the
Synchronize>Manage…
menu

Sync-22Synchronized Projects

Forcing a Resync
 If Auto-sync is set, the project

should automatically resync with
remote system when things
change (e.g. after build)

 Sometimes you may need to
do it explicitly

 Right click on project and select
Synchronization>Sync Active
Now
- or use the toolbar icon

 Status area in lower right shows
when Synchronization occurs

Sync-23Synchronized Projects

Remote Terminal
 There is a remote terminal that can provide a shell from within Eclipse

using the connection you created for your synchronized project
 Right-Click on your synchronized project and select “Show Terminal”

Or

 If view is not in your workbench:
Select Window>Show View>Other…
Choose Terminal from the Terminal folder

 In the Terminal view, click on the
Connect button

 It will use the previously configured connection from the dropdown, or
create a new one …more in Advanced Features section…

Sync-24Synchronized Projects

 If you need to change remote connection
information (such as username or
password), open Preferences
 Win/Linux: Window > Preferences
 Mac: Eclipse > Preferences

and use Remote Development >
Connections

Changing Remote Connection Information

Sync-25Synchronized Projects

Sync-26

To Edit a
connection:
 Close the

remote
connection first

 Right-click and
select Edit
 Change host,

userid,
password,
etc.

 Note: Remote Host may be closed/stopped
 Any remote interaction starts it
 No need to restart it explicitly

Synchronized Projects

Remote Connections

Exercise
1. Create a synchronized project

 Your login information and source directory will be
provided by the tutorial instructor

2. Observe that the project files are copied to your
workspace

3. Open a file in an editor, add a comment, and
save the file

4. Observe that the file is synchronized when you
save the file
 Watch lower-right status area; confirm on host system

Synchronized Projects Sync-27

Optional Exercise
1. Modify Sync filters to not bring the *.o files and

your executable back from the remote host
 Rebuild and confirm the files don’t get copied

Synchronized Projects Sync-28

Editor Features
Objective

 Learn about Eclipse editor features
 Contents

 Saving
 Editor markers
 Setting up include paths
 Code analysis
 Content assistance and templates

Editor Features Editor-0

Editors
 An editor for a resource (e.g. a file) opens when you

double-click on a resource
 The type of editor depends on the type of the resource

 .c files are opened with the
C/C++ editor by default

 You can use Open With to
use another editor

 In this case the default
editor is fine (double-click)

 Some editors do not just edit raw text
 When an editor opens on a resource, it stays open across

different perspectives
 An active editor contains menus and toolbars specific to that

editor

Editor Features Editor-1

Saving File in Editor

When you change a file in the editor,
an asterisk on the editor’s title bar
indicates unsaved changes

 Save the changes by using
Command/Ctrl-S or File>Save

 Undo last change using Command/Ctrl Z

Editor Features Editor-2

Editor and Outline View
 Double-click on

source file
 Editor will open in

main view

 Outline view is
shown for file in
editor

 Console shows
results of build,
local runs, etc.

Editor Features Editor-3

Source Code Editors & Markers

 A source code editor is a
special type of editor for
manipulating source
code

 Language features are
highlighted

 Marker bars for showing
 Breakpoints
 Errors/warnings
 Task Tags, Bookmarks

 Location bar for
navigating to interesting
features in the entire file Icons:

Editor Features Editor-4

Remote Include Paths
 In order for editor and build features to work

properly, Eclipse needs to know where your
include files are located
 The build environment on the remote host knows

your include files etc., and will work fine without
additional information

 But if we tell Eclipse also,
 Then indexing, search, completion, etc. will know

where things are

 Two methods: (A) manual and (B) discover

Editor-5Editor Features

A B

Set Include Paths manually

Editor-6Editor Features

 Open Project Properties
 Expand C/C++ General
 Select Preprocessor Include

Paths
 Click GNU C, then CDT User

Setting Entries, then click
Add…

 In upper right, select
File System Path in pulldown

 Check Contains System
Headers

 A UNC-style path specifies
//<connection>/<path>

 Enter Path
//gordon/opt/openmpi/gnu/ib/incl
ude

 Select OK

A

Include Paths con’t

 After adding include directory, it should
appear in the list

 Add second value:

//gordon/usr/include
... the same way

You should have
two entries:

Editor-7Editor Features

A

Include Paths con’t (3)

 Select OK
 The C/C++ Indexer should run

 Lower right status area indicates it

 If not force it via Project Properties>Index>Rebuild

Editor-8Editor Features

A

Set Include Paths
automatically

1. Project Properties > C/C++ General > Preprocessor Include
Paths, Macros etc.

2. Select the "Providers" tab
3. Click on the checkbox for "Sync GCC Builtin Compiler Settings”
4. Open the window wider. You'll see a text box with "Command

to get compiler specs"
 It will read
 ${COMMAND} -E -P -v -dD ${INPUTS}
 Change ${COMMAND} to mpicc, and click OK

5. Rebuild the index
 Right click on project, Index > Rebuild

1. mpi.h and its symbols should now be resolved.

Editor-9Editor Features

B

Set include paths automatically (con’t)

Editor-10Editor Features

B

Set include paths automatically (con’t)

Editor-11Editor Features

B

 You may see in lower right:

When it’s done, Rebuild Index (Rightmouse on
project)

 The C/C++ Indexer should run
 Lower right status area indicates it

Code Analysis (Codan)
 If you see bug icons in the editor marker bar, they

are likely suggestions from Codan
 If include files are set correctly, they should not appear.

 Code checkers can flag possible errors, even if
code is technically correct

 To turn them off, use Preferences
Window > Preferences or Mac: Eclipse > Preferences

C/C++ > Code Analysis
and uncheck
all problems

 Select OK to
close
Preferences If icons don’t disappear:

Right mouse on Project >
Run C/C++ Code Analysis
You can also enable/disable
this per project in Project
PropertiesUncheck allEditor Features Editor-12

Line Numbers

 Text editors can show line numbers in the
left column

 To turn on line
numbering:
 Right-mouse click in

the editor marker bar
(at editor left edge)

 Click on Show Line
Numbers

Editor Features Editor-13

 On demand hyperlink
 In main.c line 135:
 Hold down Command/Ctrl key

e.g. on call to initialise
 Click on initialise to navigate

to its definition in the header file
(Exact key combination
depends on your OS)

 E.g. Command/Ctrl and click on
initialise

 Open declaration
 Right-click and select Open

Declaration will also open the
file in which the element is
declared

 E.g. in main.c line 29 right-click
on decs.h and select Open
Declaration

Navigating to Other Files

Note: may need to left-click
before right-click worksEditor Features Editor-14

 Note: remote includes must be set up
correctly for this to work

 On demand hyperlink
 In main.c line 73:
 Ctrl-click on fprintf
 stdio.h on remote system opens

 Open declaration (or F3)
 In main.c, right-click and select

Open Declaration e.g on <stdio.h>
 File from remote system is opened.

 Hover over editor name tab to see remote
location.

Navigating to Remote Files

Editor Features Editor-15

Content Assist & Templates
 Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
 Select desired completion value with cursor or mouse

Hit ctrl-space again
for code templates Code Templates: type

‘for’ and Ctrl-space

More info on code templates later
Editor Features Editor-16

Hover Help

 Hover the mouse over a program element in
the source file to see additional information

Editor-17Editor Features

Inactive code

 Inactive code will appear grayed out in the
CDT editor

Editor-18Editor Features

Exercise
1. Open an editor by double clicking on a source file in the

Project Explorer
2. Use the Outline View to navigate to a different line in

the editor
3. Back in main.c, turn on line numbering
4. In main.c, ctrl-click on line 99, master_packet, should

navigate to its definition in the file
5. In worker.c, line 132, hover over variable p to see info

6. Try the exercises at the end of the “Basics” section, if you
haven’t already, since you now have some project/source
files to play with.

Editor Features Editor-19

Optional Exercise
1. Type “for”, then activate content assist

 Select the for loop with temporary variable template, insert it,
then modify the template variable

 Surround the code you just inserted with “#if 0” and “#endif” and
observe that it is marked as inactive

 Save the file

2. What do these keys do in the editor?
 Ctrl+L; Ctrl+Shift+P (do it near some brackets)
 Ctrl+Shift+/;
 Ctrl+Shift+Y and Ctrl+Shift+X (do it on a word or variable name

e.g.)
 Alt+Down; Alt+Up

3. To make sure you didn’t do any damage,
 Select any source files you changed and do rightmouse > replace with ..

 (if you made project from CVS) ….Latest from HEAD
 (If you made project from remote files) … Local History ….

 Observe that your changes are gone.

Editor Features Editor-20

MPI Programming
Objective

 Learn about MPI features for your source files
 Contents

 Using Editor features for MPI
MPI Help features
 Finding MPI Artifacts
MPI New Project Wizards
MPI Barrier Analysis

MPI Programming MPI-0

MPI-Specific Features

 PTP’s Parallel Language Development Tools (PLDT) has
several features specifically for developing MPI code
 Show MPI Artifacts
 Code completion / Content Assist
 Context Sensitive Help for MPI
 Hover Help
MPI Templates in the editor
MPI Barrier Analysis

 PLDT has similar features for OpenMP, UPC,
OpenSHMEM, OpenACC

MPI-1MPI Programming

 In Project Explorer, select a project, folder, or a
single source file
 The analysis will be run on the selected resource(s)

MPI-2

Show MPI Artifacts

-2

 Run the analysis by
clicking on drop-
down menu next to
the analysis button

 Select Show MPI
Artifacts

MPI Programming

-3

MPI Artifact View
 Markers indicate the

location of artifacts in
editor

 The MPI Artifact View
lists the type and location
of each artifact

 Navigate to source code
line by double-clicking on
the artifact

 Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

 Click on column headings
to sort

 Remove markers via

MPI-3MPI Programming

MPI-4

MPI Editor Features
 Code completion will show all

the possible MPI keyword
completions

 Enter the start of a keyword
then press <ctrl-space>

-4

 Hover over MPI API
 Displays the function

prototype and a
description

MPI Programming

MPI-5

Context Sensitive Help
 Click mouse, then press help

key when the cursor is within a
function name
 Windows: F1 key
 Linux: ctrl-F1 key
 MacOS X: Help key or

HelpDynamic Help
 A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

 Click on the function name to
see more information

 Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

-5

Some special
info has been
added for MPI
APIs

MPI Programming

MPI-6

MPI Templates

 Example:
MPI send-receive

 Enter:
mpisr <ctrl-space>

 Expands to a send-receive
pattern

 Highlighted variable names
can all be changed at once

 Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates
Extend to other common patterns

-6

Allows quick entry of common patterns in MPI programming

MPI Programming

MPI Barrier Analysis
 Verify barrier

synchronization in C/MPI
programs

 For verified programs, lists
barrier statements that
synchronize together
(match)

 For synchronization
errors, reports counter
example that illustrates
and explains the error

MPI-7

Local files only

MPI Programming

MPI Barrier Analysis (2)

MPI-8

Run the Analysis:
 In the Project

Explorer, select the
project (or directory,
or file) to analyze

 Select the MPI
Barrier Analysis
action in the pull-
down menu

MPI Programming

MPI Barrier Analysis (3)

 No Barrier Errors are found (no pop-up
indicating error)

 Two barriers are found

MPI-9MPI Programming

MPI Barrier Analysis Views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

MPI-10MPI Programming

Barrier Errors

 Let’s cause a barrier mismatch error
Open worker.c in the editor by double-clicking

on it in Project Explorer
 At about line 125,

enter a barrier:
 Type MPI_B
 Hit Ctl-space
 Select MPI_Barrier
 Add communicator

arg MPI_COMM_WORLD and closing semicolon

MPI-11MPI Programming

Barrier Errors (2)

 Save the file
 Ctl-S (Mac Command-S) or File > Save
 Tab should lose asterisk indicating file saved

 Run barrier analysis on shallow project again
 Select shallow

project in Project
Explorer first

MPI-12MPI Programming

Barrier Errors (3)

 Barrier Error is found
 Hit OK to dismiss dialog

 Code diverges on line 87
One path has 2 barriers, other has 1

MPI-13

Double-click
on a row in
Barrier Errors
view to find
the line it
references in
the code

MPI Programming

Fix Barrier Error

 Fix the Barrier Error
before continuing

 Double-click on the
barrier in worker.c
to quickly navigate
to it

 Remove the line and save the file
 Re-run the barrier analysis to check that it has

been fixed

MPI-14MPI Programming

Remove Barrier Markers

 Run Barrier Analysis again to remove the error
 Remove the Barrier Markers via the “X” in one

of the MPI Barrier views

MPI-15MPI Programming

MPI New Project Wizards

Quick way to make a simple MPI project
 File > New > C Project

 “MPI Hello World”
is good for trying out
Eclipse for MPI

MPI-16MPI Programming

MPI New Project Wizards (2)

 Next> and fill in (optional) Basic Settings

MPI-17

Next> and fill in MPI Project
Settings

Include path set in MPI
Preferences can be added to
project

MPI Programming

MPI New Project Wizards (3)

 Select Finish and “MPI Hello World” project
is created

MPI-18MPI Programming

MPI Preferences

 Settings for MPI New Project wizards
MPI Include paths, if set in MPI

Preferences, are added in MPI New
Project Wizard

MPI-19MPI Programming

Exercise

1. Find MPI artifacts in ‘shallow’ project
 Locate all the MPI communication (send/receive)

calls
2. Use content assist to add an api call
 E.g., Type MPI_S, hit ctl-space

3. Use hover help
4. Use a template to add an MPI code template
 On a new line, type mpisr and ctl-space…

MPI-20MPI Programming

Optional Exercise

1. Insert an MPI_Barrier function call into one of
your source files using content assist
 E.g. Line 125 of worker.c

2. Save the file
3. Run Barrier Analysis on the project
4. Locate the source of the barrier error and

remove the statement
5. Re-run barrier analysis to observe that the

problem has been fixed

MPI-21MPI Programming

Building a Project

Objective
 Learn how to build an MPI program on a remote

system
 Contents

 How to change build settings
 How to start a build and view build output
 How to clean and rebuild a project
 How to do environment configuration with modules
 How to create build targets

Build-0Building a Project

Build Configurations
 A build configuration provides the

necessary information to build the
project

 The build configuration
information is specified in the
project properties

 Projects can have multiple build
configurations, each configuration
specifies a different set of options
for a build

 Open the properties by right-
clicking on the project name in the
Project Explorer view and
selecting Properties (bottom of
the context menu list)

Build-1Building a Project

Note: Fortran projects are a superset of
C/C++ projects, so they have properties
for both

Build Properties (1)

Build-2Building a Project

 C/C++ Build
 Main properties page
 Configure the build command
 Default is “make” but this can be changed to

anything
 Build Variables

 Create/manage variables that can be used in other
build configuration pages

 Environment
 Modify/add environment variables passed to build

 Logging
 Enable/disable build logging

Build Properties (2)

Build-3Building a Project

 Settings
 Binary parser selection (used to display binaries in

Project Explorer)
 Error parser selection (used to parse the output from

compiler commands)
 Tool Chain settings (managed projects only)

 Tool Chain Editor
 Allows the tools in a particular tool chain to be

modified
 XL C/C++ Compiler

 Compiler settings for XL C/C++ compilers (if installed)

 C/C++ General/Preprocessor Include Paths…
 Set include paths here

Selecting Build Configuration

 Multiple build configurations may be available
 Synchronized projects will usually have a remote and a local build configuration
 Build configurations for different architectures

 The active build configuration will be used when the build button
is selected

 The Build Configurations project context menu can be used to
change the active configuration
 Right click on project, then select the build configuration from the Build

Configurations > Set Active menu

Build-4Building a Project

Building Synchronized Projects
 When the build button is selected, the

“active” build configuration will be built
on the remote system specified by the
“active” synchronize configuration

 The build and synchronize configurations
are independent
 It is possible to change which build

configuration is active, but make sure this
makes sense on the remote system specified in
the synchronize configuration

 Right mouse on Project,
Synchronize > Manage…

 A build configuration can be associated
with a synchronize configuration, so that
it is automatically selected when the
synchronize configuration is changed

Build-5Build

Configuring the Build Environment
 If the remote system has an

environment system (such as
Modules) installed, a custom
set of modules can be
configured for building C/C++
projects

 In the Manage Synchronize
Configurations dialog, select
the configuration you wish to
change

 Check Use an environment
management system to
customize the remote build
environment

Build-6Building a Project

Build Environment (2)
 Select a module from the

Available Modules list and
click the Add-> button to add
them to the Selected
Modules list

 Use the <-Remove button to
remove modules from the
Selected Modules list

 Use the Filter list field to
quickly find modules with a
given name

 Use the Up and Down
buttons to change the order of
the Selected Modules

 Click Select Defaults to load
only those modules that are
present in a new login shell

Build-7Building a Project

We’ll do this for tutorial in a few slides…

Build Environment (3)

 When you build the project, Eclipse will
 Open a new Bash login shell
 Execute module purge
 Execute module load for each selected module
 Run make

 Module commands are displayed in the Console view during build
 Beware of modules that must be loaded in a particular order, or

that contain common paths like /bin or /usr/bin

Build-8Building a Project

Build Environment (4)
 For this tutorial, we

want to use gcc and
Open MPI

 To get to this dialog: Right
mouse on Project,
Synchronize > Manage…

 Navigate to gnu in
Available Modules
and select Add ->

 Navigate to
openmpi_ib and
select Add ->

 Assure the
order matches this
 If not, use Up/Down

buttons

Build-9Building a Project

Start with original‘shallow’

 Start with original ‘shallow’ code:
 Project checked out from git:
Right mouse on project,

Replace With > HEAD Revision

Also see Compare With …
Other project:
Right mouse on project,

Restore from local history – finds deleted files
Right mouse on file, Compare With

or Replace With

Build-10Building a Project

Starting the Build
 Select the project in Project Explorer

 Click on the hammer button in toolbar to run a build
using the active build configuration

 By default, the Build Configuration assumes there is a
Makefile (or makefile) for the project

Build-11Building a Project

 Build output will be visible in console

Viewing the Build Output

Build-12Building a Project

Build Problems

 Build problems will be
shown in a variety of
ways
 Marker on file
 Marker on editor line
 Line is highlighted
 Marker on overview ruler
 Listed in the Problems

view

 Double-click on line in
Problems view to go
to location of error in
the editor

Building a Project Build-13

Forcing a Rebuild
 If no changes have been made,

make doesn’t think a build is needed
e.g. if you only change the Makefile

 In Project Explorer, right click on
project; Select Clean Project

 Build console will display results

 Rebuild project by clicking on
build button again

Building a Project Build-14

Forcing a Resync
 Project should resync with remote

system when things change
 Sometimes you may need to

do it explicitly
 Right mouse on project,

Synchronize>Sync Active Now

 Status area in lower right shows
when Synchronization occurs

Building a Project Build-15

 By default
 The build button will run “make all”
 Cleaning a project will run “make clean”

 Sometimes, other build targets are
required

 Open Make Target view
 Select project and click on New

Make Target button
 Enter new target name
 Modify build command if desired
 New target will appear in view
 Double click on target to activate

Creating Make Targets

Build-16Building a Project

Build-17

Exercise

1. Start with your ‘shallow’ project
2. Build the project
3. Edit a source file and introduce a compile error

 In main.c, line 97, change ‘;’ to ‘:’
 Save, rebuild, and watch the Console view
 Use the Problems view to locate the error
 Locate the error in the source code by double

clicking on the error in the Problems view
 Fix the error

4. Rebuild the project and verify there are no build errors

Building a Project

Build-18

Optional Exercise

1. Open the Makefile in Eclipse. Note the line starting with
“tags:” – this defines a make target named tags.

2. Open the Outline view while the Makefile is open. What icon
is used to denote make targets in the Outline?

3. Right-click the tags entry in the Outline view. Add a Make
Target for tags.

4. Open the Make Target view, and build the tags target.

5. Rename Makefile to Makefile.mk
6. Attempt to build the project; it will fail
7. In the project properties (under the C/C++ Build category),

change the build command to: make –f Makefile.mk
8. Build the project; it should succeed

Building a Project

Running an Application
Objective

 Learn how to run an MPI program on a remote system

 Contents
 Creating a run configuration
 Configuring the application run
Monitoring the system and jobs
 Controlling jobs
Obtaining job output

Running an Application Run-1

Run-2

 Open the run configuration
dialog Run>Run
Configurations…

 Select Parallel Application
 Select the New button

Or, just double-click on
Parallel Application
to create a new one

Creating a Run Configuration

Note: We use “Launch Configuration” as a generic term to refer to either a
“Run Configuration” or a “Debug Configuration”, which is used for debugging.

Running an Application

Run-3

Set Run Configuration Name
 Enter a name for this run configuration

 E.g. “shallow”

 This allows you to easily re-run the
same application

 If the “shallow” project was selected
when the dialog was opened, its name
will be automatically entered

-3Running an Application

Run-4

Configuring the Target System
 In Resources tab, select a

Target System Configuration
that corresponds to your target
system
 Use Generic Torque Batch

 Target system configurations can
be generic or can be specific to a
particular system

 Use the specific configuration if
available, or the generic
configuration that most closely
matches your system

 You can type text in the box to
filter the configurations in the
list

-4Running an Application

Run-5

Configure the Connection
 Choose a connection to

use to communicate with
the target system

 If no connection has been
configured, click on the
New button to create a
new one
 Fill in connection information,

then click ok

 The new connection
should appear in the
dropdown list

 Select the connection you
already have to
gordon.sdsc.edu

 Select toggle if you don’t
want to see popup again

-5Running an Application

Run-6

Resources Tab
 The content of the

Resources tab will vary
depending on the target
system configuration
selected

 This example shows the
TORQUE configuration

 For TORQUE, you will
normally need to select
the Queue and the
Number of nodes

 For parallel jobs, choose
the MPI Command and
the MPI Number of
Processes

-6Running an Application

For this tutorial:
• Queue: normal
• Number of nodes: 1:ppn=5
• MPI Command: mpirun
• MPI Number of Processes: 5
• Leave other fields alone

Run-7

Configure Environment Modules
 Click on the Modules to Load: Configure… button
 Check the Use an environment management system to

customize the remote build environment box if it is not
already checked

 Select the required modules and click Add -> (you can
either select one at a time, or all at once)

 Click ok

-7Running an Application

For this tutorial, use the
following modules:
• gnu
• gnubase
• openmpi_ib

Run-8

Viewing the Job Script
 Some target

configurations will
provide a View Script
button

 Click on this to view the
job script that will be
submitted to the job
scheduler

 Batch scheduler
configurations should
also provide a means of
importing a batch script

-8Running an Application

Run-9

Application Tab

 Select the Application tab
 Choose the Application

program by clicking the
Browse button and locating
the executable on the remote
machine
 Use the same “shallow”

executable
 Select Display output from

all processes in a console
view

-9Running an Application

Run-10

Arguments Tab (Optional)
 The Arguments tab lets

you supply command-line
arguments to the
application

 You can also change the
default working directory
when the application
executes

-10Running an Application

Run-11

Environment Tab (Optional)
 The Environment tab

lets you set environment
variables that are passed
to the job submission
command

 This is independent of the
Environment Management
(module/softenv) support
described on previous
slide

-11Running an Application

Run-12

Synchronize Tab (Optional)
 The Synchronize tab lets

you specify
upload/download rules
that are execute prior to,
and after the job
execution

 Click on the New
upload/download rule
buttons to define rules

 The rule defines which file
will be
uploaded/downloaded and
where it will be put

 Can be used in
conjunction with program
arguments to supply input
data to the application

-12Running an Application

Run-13

Common Tab (Optional)
 The Common tab is

available for most launch
configuration types (not
just Parallel Application)

 Allows the launch
configuration to be
exported to an external
file

 Can add the launch
configuration to the
favorites menu, which is
available on the main
Eclipse toolbar

 Select Run to launch
the job

-13Running an Application

Run

 Select Run to launch the job
 You may be asked to switch to the System

Monitoring Perspective

 Select Remember my decision so you
won’t be asked again

 Select Yes to switch and launch the job

Run-14Building and Running

System Monitoring Perspective
 System view

 Jobs running
on system

 Active jobs

 Inactive jobs

 Messages

 Console

Run-15Running an Application
Scroll to see more

Moving views

 The System Monitoring Perspective overlaps
the Active Jobs and Inactive Jobs views

 To split them apart and see both at once,
drag the tab for the Inactive Jobs view to
the lower half of its area, and let go of mouse

Run-16Building and Running

Run-17

System Monitoring

 System view, with
abstraction of system
configuration

 Hold mouse button
down on a job in
Active Jobs view to
see where it is
running in System
view

 Hover over node in
System view to see
job running on node
in Active Jobs view

-17

One node with
16 cores

Running an Application

Run-18

 Job initially appears in
Inactive Jobs view

 Moves to the Active Jobs
view when execution
begings

 Returns to Inactive Jobs
view on completion

 Status refreshes
automatically every 60 sec

 Can force refresh with menu

-18Running an Application

Job Monitoring

Run-19

 Right click on a job to open
context menu

 Actions will be enabled IFF
 The job belongs to you
 The action is available on the

target system
 The job is in the correct state for

the action

 When job has COMPLETED, it
will remain in the Inactive
Jobs view

-19Running an Application

Controlling Jobs

Run-20

 After status changes to
COMPLETED, the output is
available
 Right-click on the job
 Select Get Job Output to display

output sent to standard output
 Select Get Job Error to retrieve

output sent to standard error

 Output/Error info shows in
Console View

 Jobs can be removed by
selecting Remove Job Entry

-20Running an Application

Obtaining Job Output

Add a Monitor

 You can monitor other systems too
 In Monitors view, select the ‘+’ button to

add a monitor

 Choose monitor type and connection;
create a new connection if necessary

Run-21Running an Application

Double click
new monitor
to start

Run-22

Exercise

1. Start with your ‘shallow’ project
2. Create a run configuration
3. Complete the Resources tab
4. Select the executable in the Application tab
5. Submit the job
6. Check the job is visible in the Inactive Jobs view,

moves to the Active Jobs view when it starts running
(although it may be too quick to show up there), then
moves back to the Inactive Jobs view when completed

7. View the job output
8. Remove the job from the Inactive Jobs view

Running an Application

Tutorial Wrap-up

Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

WrapUp-0Tutorial Wrap Up

Useful Eclipse Tools

 Linux Tools (autotools, valgrind, Oprofile, Gprof)
 http://eclipse.org/linuxtools (part of Parallel package)

 Python
 http://pydev.org

 Ruby
 http://www.aptana.com/products/radrails

 Perl
 http://www.epic-ide.org

 VI bindings
 Vrapper (open source) - http://vrapper.sourceforge.net
 viPlugin (commercial) - http://www.viplugin.com

Tutorial Wrap Up WrapUp-1

http://eclipse.org/linuxtools
http://www.epic-ide.org

Online Information
 Information about PTP

 PTP online help
http://help.eclipse.org

Main web site for downloads, documentation, etc.
http://eclipse.org/ptp

Wiki for designs, planning, meetings, etc.
http://wiki.eclipse.org/PTP

 Information about Photran
Main web site for downloads, documentation, etc.

http://eclipse.org/photran

Tutorial Wrap Up WrapUp-2

Mailing Lists

 User Mailing Lists
 PTP

 http://dev.eclipse.org/mailman/listinfo/ptp-user
 Photran

 http://dev.eclipse.org/mailman/listinfo/photran
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

 Developer Mailing Lists
 Developer discussions - higher volume

 http://dev.eclipse.org/mailman/listinfo/ptp-dev

Tutorial Wrap Up WrapUp-3

http://dev.eclipse.org/mailman/listinfo/ptp-dev

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki

 http://wiki.eclipse.org/PTP
 Join the mailing lists
 Attend the monthly developer meetings

 Conf Call Monthly: Second Tuesday, 1:00 pm ET
 Details on the PTP wiki

Tutorial Wrap Up WrapUp-4

PTP Tutorial Wrap-Up

 Your feedback is valuable!

Thanks for attending
We hope you found it useful

Tutorial Wrap Up WrapUp-5

	ptp-00-xsede15
	Slide Number 1
	Slide Number 2
	Slide Number 3

	ptp-01-install
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	ptp-02-intro
	Introduction
	What is Eclipse?
	Eclipse Features
	Parallel Tools Platform (PTP)
	Eclipse PTP Family of Tools
	How Eclipse is Used

	ptp-03-01-basics
	Eclipse Basics
	Eclipse Basics
	Perspectives
	Switching Perspectives
	Which Perspective?
	Views
	Stacked Views
	Expand a View
	Help
	Eclipse Preferences
	Preferences Example
	Exercise
	Optional Exercise�Best performed after learning about projects, CVS, and editors

	ptp-03-02a-syncProj
	Creating a Synchronized Project
	Project Location
	Synchronized Projects
	Revision Control Systems�(Source Code Repositories)
	Synchronized Project Creation
	C, C++, and Fortran Projects�Build types
	Create Synchronized project on the local machine at the same time.��Two steps:
	Clone the git repo
	Specify remote git repo location
	Finish git cloning
	Import project from cloned repo
	Create new project with wizard
	New Project Wizard�
	New Synchronized Project Wizard
	Local and remote directories
	Creating a Connection
	Specifying the remote directory
	Project Type & Toolchain
	Project successfully created
	Synchronized Project
	Synchronize Filters
	Synchronize Filter Dialog
	Synchronized Project Properties
	Forcing a Resync
	Remote Terminal
	Changing Remote Connection Information
	Remote Connections
	Exercise
	Optional Exercise

	ptp-03-03-editor
	Editor Features
	Editors
	Saving File in Editor
	Editor and Outline View
	Source Code Editors & Markers
	Remote Include Paths
	Set Include Paths manually
	Include Paths con’t
	Include Paths con’t (3)
	Set Include Paths �automatically
	Set include paths automatically (con’t)
	Set include paths automatically (con’t)
	Code Analysis (Codan)
	Line Numbers
	Navigating to Other Files
	Navigating to Remote Files
	Content Assist & Templates
	Hover Help
	Inactive code
	Exercise
	Optional Exercise

	ptp-03-04-mpi
	MPI Programming
	MPI-Specific Features
	Show MPI Artifacts
	MPI Artifact View
	MPI Editor Features
	Context Sensitive Help
	MPI Templates
	MPI Barrier Analysis
	MPI Barrier Analysis (2)
	MPI Barrier Analysis (3)
	MPI Barrier Analysis Views
	Barrier Errors
	Barrier Errors (2)
	Barrier Errors (3)
	Fix Barrier Error
	Remove Barrier Markers
	MPI New Project Wizards
	MPI New Project Wizards (2)
	MPI New Project Wizards (3)
	MPI Preferences
	Exercise
	Optional Exercise

	ptp-04-01-build
	Building a Project
	Build Configurations
	Build Properties (1)
	Build Properties (2)
	Selecting Build Configuration
	Building Synchronized Projects
	Configuring the Build Environment
	Build Environment (2)
	Build Environment (3)
	Build Environment (4)
	Start with original‘shallow’
	Starting the Build
	Viewing the Build Output
	Build Problems
	Forcing a Rebuild
	Forcing a Resync
	Creating Make Targets
	Exercise
	Optional Exercise

	ptp-04-02-run
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

	ptp-20-wrapup
	Tutorial Wrap-up
	Useful Eclipse Tools
	Online Information
	Mailing Lists
	Getting Involved
	PTP Tutorial Wrap-Up

