

Eclipse IOT day April 3016 LoRa Overview

brian.wyld@wyres.fr

<u>www.wyres.eu</u> © Wyres SAS 2016

- LoRa objectives
- LoRa PHY overview
- Licenses / State regulation
- LoRa MAC : LoRaWAN
- Other MAC protocols
- Technology alternatives
- Example of use

LoRa Objectives

- Low energy usage for endpoints
- Long range / good building penetration
- Ability to run in unlicensed bands
- Allow high density of nodes

Technology alternatives

- Zigbee
- Sigfox
- 802.15.4
- Bluetooth
- Wifi
- Wireless M-Bus
- Z-Wave
- WiMax
- 3G/4G/LTE

LoRa PHY

- Aimed at sub-GHz unlicensed spectrum (868/915/433MHz) for world-wide operation
- Splits band into multiple channels
- Spread-spectrum encoding system:
 - allows sharing of channels with different 'spreading factors'
 - Can demodulate at 20db below noise floor
- Variety of bandwidths selectable (related to SF) 7.8kHz – 500kHz
 - Generally low throughput and small packets
- Channel access may implement Listen
 Before Talk to avoid clash

LoRa PHY implementation

- One supplier only so far (Semtec)
- Single chip radio controller for endpoints (SX1272)
- PCB antennas possible
- Reference implementations available
- Separate chip for 'gateway' concentrators (simultaneous multichannel/SF reception)

Licensing

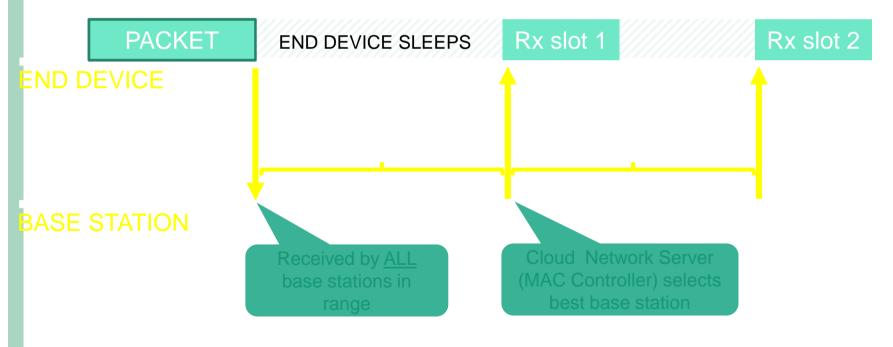
- Radio spectrum : ISM bands
 - 868MHz EU
 - 915MHz US
 - Various 700-900MHz bands in Asia
- Chipset is approved in each area for use in the band
- Software may be required to implement access controls eg LBT or specific TX duty cycle (typ.1%)
- License to use LoRa included in SEMTEC chip no extra license fee
- No State license required to operate a network
 - public and private networks are possible

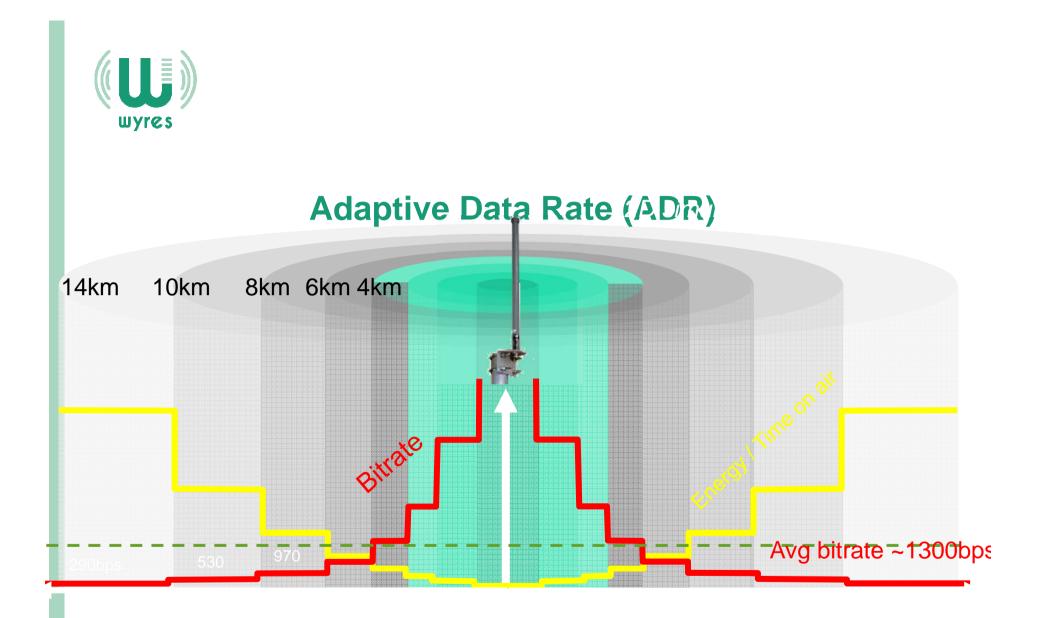
LoRaWAN

- Defines network MAC layer over LoRa PHY for bidirectional scalable operation (concepts from 802.15.4)
- Star architecture : central gateway / multiple endpoints
- Gateway:
 - requires specific central gateway chip (multi-channel/SF reception)
 - Powered operation
 - Controls auth/encryption/downlink scheduling
- Endpoint :
 - Can be very low power
 - Tx and rx data
- Standardised / interoperable protocol specification (controlled by LoRa Alliance technical committee)
- Free source code LoRaWAN implementation for endpoint operation available on GitHub

LoRaWAN design objectives

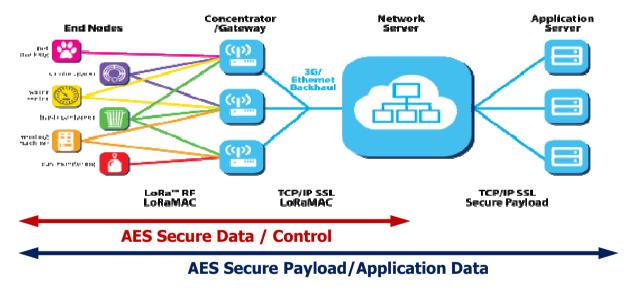
- Designed for virtualized CLOUD BASED network layer:
 - Simpler base stations, less maintenance
 - All NW antennas behave as one, no handover necessary.
- Close ALIGNMENT WITH IEEE 802.15.4 in order to preserve higher layers
 - 6LoWPAN compatibility
 - IEEE sensor address space
- MINIMAL ENERGY REQUIREMENTS: Eliminate useless overheads.
- Enables SMOOTH VERSIONING


LoRaWAN device classes


CLASS NAME	INTENDED USAGE
A (« all »)	Battery powered sensors, or actuators with no latency constraintMost energy efficient communication class.Must be supported by all devices
B (« beacon »)	Battery powered actuators Energy efficient communication class for latency controlled downlink. Based on slotted communication synchronized with a network beacon.
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.

Bidirectional communication, class A

Receiver Initiated Transmission strategy (RIT)



•

•

LoRaWAN authentication and encryption

Other MACs

- Currently no other standardised MAC protocols (eg mesh)
- Some board providers have defined message formats and operations

 Eg for serial link emulation
- Lacking an interoperable endpointendpoint protocol...
 - New open source project opportunity!
 - LoWAPP : peer to peer group protocol

Usage example

- Wyres : indoor geo-loc using connected objects:
 - 'beacon' fixed to walls
 - 'tag' mobile to be located
 - Card with STM32/Lora radio + MEMS captors
 - Both are battery powered
- Communication between objects using proprietry radio exchanges
- Data up/downlink to cloud : LoRaWAN to Wyres owned gateways (Multitech).
- Code development using EclipseIDE and derivations (CoIDE)
- Processing cloud with Open source components : MQTT/Paho/OpenVPN/Tomcat/MongoDB/Cassan dra...