
14/05/2013 © Ed Merks | EDL V1.0 1

Java Performance is Complex

• Write once run everywhere
– Java is slow because it’s interpreted

• No, there are Just In Time (JIT) compilers

– Different hardware and platforms
– Different JVMs

• Different tuning options

– Different language versions

14/05/2013 © Ed Merks | EDL V1.0 2

Faster is Better

14/05/2013 © Ed Merks | EDL V1.0 3

Smaller is Better

14/05/2013 © Ed Merks | EDL V1.0 4

14/05/2013 © Ed Merks | EDL V1.0 5

Measuring

14/05/2013 © Ed Merks | EDL V1.0 6

Benchmarking

14/05/2013 © Ed Merks | EDL V1.0 7

Profiling

14/05/2013 © Ed Merks | EDL V1.0 8

14/05/2013 © Ed Merks | EDL V1.0 9

Don’t Trust Your Friends

• Your friends are stupid

14/05/2013 © Ed Merks | EDL V1.0 10

14/05/2013 © Ed Merks | EDL V1.0 11

Don’t Trust Yourself

• You know nothing

14/05/2013 © Ed Merks | EDL V1.0 12

Don’t Trust the Experts

• The experts are misguided

14/05/2013 © Ed Merks | EDL V1.0 13

Definitely Don’t Trust Me!

14/05/2013 © Ed Merks | EDL V1.0 14

Don’t Trust Anything

• Everything that’s true today might be false
tomorrow

• Whatever you verify is true today is false
somewhere else

14/05/2013 © Ed Merks | EDL V1.0 15

Where Does That Leave You?

• Don’t worry
• Be happy
• Write sloppy code and place blame elsewhere

– Java
– The hardware
– The platform
– JVM
– Poor tools

14/05/2013 © Ed Merks | EDL V1.0 16

14/05/2013 © Ed Merks | EDL V1.0 17

• How does the performance scale relative to the
growth of the input?

– O(1) – hashed lookup
– O(log n) – binary search
– O(n) – list contains
– O(n log n) – efficient sorting
– O(n^2) – bubble sorting
– O(2^n) – combinatorial explosion

• No measurement is required

Algorithmic Complexity

0

5

10

15

20

25

30

35

14/05/2013 © Ed Merks | EDL V1.0 18

Loop Invariants

• Don’t do something in a loop you that can do
outside the loop

• Learn to use Alt-Shift-↑ and Alt-Shift-L

public NamedElement find(NamedElement namedElement){
 for (NamedElement otherNamedElement : getNamedElements()) {
 if (namedElement.getName().equals(otherNamedElement.getName())) {
 return otherNamedElement;
 }
 }
 return null;
}

14/05/2013 © Ed Merks | EDL V1.0 19

Generics Hide Casting

• Java 5 hides things in the source, but it
doesn’t make that free at runtime

• Not just the casting is hidden but the iterator too

public NamedElement find(NamedElement namedElement) {
 String name = namedElement.getName();
 for (NamedElement otherNamedElement : getNamedElements()) {
 if (name.equals(otherNamedElement.getName())) {
 return otherNamedElement;
 }
 }
 return null;
}

14/05/2013 © Ed Merks | EDL V1.0 20

Overriding Generic Methods

• Overriding a generic method often results in
calls through a bridge method
– That bridge method does casting which isn’t free

 new HashMap<String, Object>() {
 @Override
 public Object put(String key, Object value) {
 return super.put(key == null ? null : key.intern(), value);
 }
};

14/05/2013 © Ed Merks | EDL V1.0 21

Accessing Private Fields

• Accessing a private field of another class
implies a method call
public static class Context {
 private class Point {
 private int x;
 private int y;
 }

 public void compute()
 {
 Point point = new Point();
 point.x = 10;
 point.y = 10;
 }
}

14/05/2013 © Ed Merks | EDL V1.0 22

External Measurements

• Profiling
– Tracing

• Each and every (unfiltered) call in the process is
carefully tracked and recorded

• Detailed counts and times, but is slow, and intrusive,
and doesn’t reliably reflect non-profiled performance

– Sampling
• The running process is periodically sampled to give a

statistical estimate of where the time is being spent
• Fast and unintrusive, but unreliable beyond hot spot

identification

14/05/2013 © Ed Merks | EDL V1.0 23

Call It Less Often

• Before you focus on making something faster
focus on calling it less often

14/05/2013 © Ed Merks | EDL V1.0 24

External Measurements

• Consider using YourKit
– They support* open source

14/05/2013 © Ed Merks | EDL V1.0 25

Internal Measurements

• Clock-based measurements
– System.currentTimeMillis
– System.nanoTime (Java 1.5)

• Accuracy verses Precision
– Nanoseconds are more precise than milliseconds
– But you can’t trust the accuracy of either

14/05/2013 © Ed Merks | EDL V1.0 26

Micro Benchmarks

• Measuring small bits of logic to draw
conclusions about which approach performs
best
– These are fraught with problems
– The same JIT will produce very different results in

isolation from what it does in real life
– The hardware may produce very different results

in isolation from what it does in a real application
– You simply can’t measure threading reliably

14/05/2013 © Ed Merks | EDL V1.0 27

Micro Benchmarks

• The JIT will turn your code into a very cheap
no-op
– Your benchmark must compute a result visible to

the harness

• Because the clocks are inaccurate you must
execute for a long time
– That typically implies doing something in a loop

and then of course you’re measuring the loop
overhead too

14/05/2013 © Ed Merks | EDL V1.0 28

Micro Benchmarks

• Do as much as possible outside the
benchmark and outside the loop

• You want to know the performance of the
compiled code, not the interpreted code
– You need a warmup

• Use -XX:+PrintCompilation

– Beware the garbage collector
• Use -verbose:gc

14/05/2013 © Ed Merks | EDL V1.0 29

Micro Measurements

• I wrote a small benchmark harness
– http://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/tests/org.eclipse.

emf.test.core/src/org/eclipse/emf/test/core/BenchmarkHarness.java

– Write a class that extends Benchmark and
implements run

– The harness runs the benchmark to determine
many times it must run to use approximately a
minimum of one second

– Then it runs it repeatedly, gathering statistics

14/05/2013 © Ed Merks | EDL V1.0 30

http://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/tests/org.eclipse.emf.test.core/src/org/eclipse/emf/test/core/BenchmarkHarness.java
http://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/tests/org.eclipse.emf.test.core/src/org/eclipse/emf/test/core/BenchmarkHarness.java

Platform

• Hardware

• OS

• JVM

java version "1.6.0_32"
Java(TM) SE Runtime Environment (build 1.6.0_32-b05)
Java HotSpot(TM) 64-Bit Server VM (build 20.7-b02, mixed mode)

Intel Core i7-2920XM CPU @ 2.5Ghz

Windows 7 Professional
Service Pack 1

14/05/2013 © Ed Merks | EDL V1.0 31

The Simplest Micro Measurement

• This is the simplest thing you can measure

• 0.348 < 0.348 < 0.350 CV%: 0.00 CR 95%: 0.348 <- 0.350

 public static class CountedLoop extends Benchmark {
 public CountedLoop() { super(1000000); }

 @Override
 public int run() {
 int total = 0;
 for (int i = 0; i < count; ++i) {
 total += i;
 }
 return total;
 }

 @Override
 public String getLogic() {
 return "total += i;";
 }
 }

14/05/2013 © Ed Merks | EDL V1.0 32

Cache Field in Local Variable

• I heard that caching a repeatedly-accessed
field in a local variable improves performance

• 0.328 < 0.329 < 0.330 CV%: 0.00 CR 95%: 0.328 <- 0.330
• 10% faster

public int run() {
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i;
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 33

Questionable Conclusions

• Depending on the order in which I run the
benchmarks together, I get different results

• In isolation they perform the same
• In combination, whichever is first is faster

public static void main(String[] args) {
 Benchmark[] benchmarks = {
 new CountedLoop(),
 new CountedLoopWithLocalCounter(),
 };
 new BenchmarkHarness(1).run(20, benchmarks);
}

14/05/2013 © Ed Merks | EDL V1.0 34

Array Access

• Let’s measure the cost of accessing an array

• 0.315 < 0.317 < 0.325 CV%: 0.63 CR 90%: 0.316 <- 0.325
• Hmmm, it takes negative time to access an array

 public int run() {
 int[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += array[i];
 }
 return total;
 }

14/05/2013 © Ed Merks | EDL V1.0 35

Array Access Revised

• Let’s try again

• 0.498 < 0.499 < 0.504 CV%: 0.20 CR 90%: 0.498 <- 0.504

• Subtracting out the cost of the scaffolding, we could
conclude that array access takes 0.151 nanoseconds

 public int run() {
 int[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + array[i];
 }
 return total;
 }

14/05/2013 © Ed Merks | EDL V1.0 36

Array Assignment

• Let’s measure array assignment

• 0.793 < 0.795 < 0.798 CV%: 0.13 CR 90%: 0.793 <- 0.798

• We could conclude that array assignment
takes 0.296 nanoseconds

public int run() {
 int[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 array[i] = total += i + array[i];
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 37

Method Call

• How expensive is calling a method?

• 5.308 < 5.328 < 5.362 CV%: 0.24 CR 90%: 5.315 <- 5.362
• We could conclude that this method call takes

4.829 nanoseconds

public int run() {
 String[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + array[i].hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 38

Method Call

• How expensive is calling a native method?

• 2.442 < 2.456 < 2.480 CV%: 0.45 CR 90%: 2.443 <- 2.480
• We could conclude that this native method call

takes 1.975 nanoseconds

public int run() {
 Object[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + array[i].hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 39

Array Verses List

• How fast is an array list compare to an array

• 5.565 < 5.617 < 5.703 CV%: 0.69 CR 90%: 5.568 <- 5.703

• We could conclude that calling get(i) takes 0.289
nanoseconds

public int run() {
 ArrayList<String> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + list.get(i).hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 40

JIT Inlining

• How can calling String.hashCode take 4.829
nanoseconds while calling ArrayList.get takes
0.289 nanoseconds?
– That’s 95% faster, and hashCode doesn’t do much
– Inlining

• java.util.ArrayList::RangeCheck (48 bytes)
• java.util.ArrayList::get (12 bytes)

• You never know whether the JIT will inline
your calls but the difference is dramatic

14/05/2013 © Ed Merks | EDL V1.0 41

What Can the JIT Inline?

• Calls to relatively small methods which is
influenced by server mode and by JVM options

• Calls to static methods which are always final
• Calls to methods implicitly or explicitly via this or

super when the JIT can infer final
• Calls to methods declared in other classes, if final

can be inferred
• Calls to methods on interfaces

– That depends on how many classes implement the
interface, i.e., how well final can be inferred

14/05/2013 © Ed Merks | EDL V1.0 42

When Does the JIT Inline?

• Only after many calls to a method, i.e., on the
order of 10,000

• The JIT focuses on methods whose
improvement will have a significant overall
impact

• Loading of classes can impact the
determination of finalness of methods such
that optimizations may need to be reverted

14/05/2013 © Ed Merks | EDL V1.0 43

How Does BasicEList Compare?

• How fast is EMF’s BasicEList relative to ArrayList

• 5.567 < 5.580 < 5.599 CV%: 0.14 CR 90%: 5.572 <- 5.599
• Quite well, but there are many subclasses!

public int run() {
 BasicEList<String> eList = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + eList.get(i).hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 44

How Expensive is Casting?

• First let’s measure this as a baseline

• 5.946 < 5.967 < 6.001 CV%: 0.22 CR 90%: 5.953 <- 6.001
• Note that calling charAt is 0.639 nanoseconds slower

than calling hashCode

public int run() {
 String[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + array[i].charAt(0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 45

How Expensive is Actual Casting?

• Here the call to get really must cast to a String

• 6.004 < 6.037 < 6.127 CV%: 0.50 CR 90%: 6.006 <- 6.127
• That’s just a 0.07 nanosecond difference, i.e., smaller than

we’d expect for array verses list, so casting is very cheap

public int run() {
 ArrayList<String> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + list.get(i).charAt(0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 46

Method Call Revisited

• Let’s measure method calls again

• 20.154 < 20.181 < 20.266 CV%: 0.12 CR 90%: 20.158 <- 20.266
• Wow, that took long! Calling getName takes 14.853

nanoseconds

public int run() {
 ENamedElement[] array = this.array;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + array[i].getName().hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 47

So How Expensive is Casting Really?

• Let’s measure that using a list

• 19.549 < 19.613 < 19.841 CV%: 0.30 CR 90%: 19.566 <- 19.841
• It’s faster, until my machine nearly catches fire, and then it’s

the same, so casting is apparently free. Hmmm….

public int run() {
 List<ENamedElement> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + list.get(i).getName().hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 48

Casting is Hard to Measure!

• I heard from experts that the cost of casting
depends on…
– The complexity of the runtime hierarchy

• I’ve been told that an object remembers what it
was cast to recently and can be cast again more
quickly so one should avoid “ping pong” casting

• In any case, casting is much faster today than it
was 10 years ago, when it was shockingly slow

14/05/2013 © Ed Merks | EDL V1.0 49

O(n) With a Large Constant

• Contains testing on a list is O(n), for n 1000

• 3,544.660 < 3,562.194 < 3,692.060 CV%: 0.90 CR 90%: 3,545.132 <- 3,692.060

public int run() {
 List<ENamedElement> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (list.contains(lastENamedElement) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 50

O(n) With a Small Constant

• Contains testing on a list is O(n), for n 1000

• 365.123 < 365.948 < 367.809 CV%: 0.18 CR 90%: 365.194 <- 367.809
• It’s ~10 times faster because it uses == rather than Object.equals!
• And that’s why you can’t override EObject.equals

public int run() {
 BasicEList.FastCompare<ENamedElement> eList = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (eList.contains(lastENamedElement) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 51

O(1) List Contains

• Contains testing on a containment list is O(1), for any
value of n, here 1000

• 4.733 < 4.750 < 4.820 CV%: 0.38 CR 90%: 4.740 <- 4.820
• It’s another ~75 times faster because an EObject knows whether or

not it’s in a containment list

public int run() {
 EObjectContainmentEList<ENamedElement> eList = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (eList.contains(lastENamedElement) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 52

O(1) HashSet Contains

• Contains testing on a HashSet is always O(1)

• 5.758 < 5.775 < 5.797 CV%: 0.16 CR 90%: 5.765 <- 5.797
• It takes 5.276 nanoseconds to do a contains test; it’s still

slower than a containment list’s contains testing…

public int run() {
 HashSet<ENamedElement> set = this.set;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (set.contains(lastENamedElement) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 53

Synchronize: Thread Safety

• Suppose we used Collections.synchronizedSet

• 26.309 < 26.400 < 26.592 CV%: 0.24 CR 90%: 26.336 <- 26.592
• It takes ~20 nanoseconds to do the synchronize, even with only a

single thread using this set
• Even with a derived class that simply overrides contains, rather than

a wrapper, I get the same result

public int run() {
 Set<ENamedElement> set = this.set;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (set.contains(lastENamedElement) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 54

Object Allocation

• Creating just a plain old Object

• 46.684 < 47.113 < 49.081 CV%: 1.32 CR 90%: 46.738 <- 49.081
• It’s hard to avoid measuring GC impact
• Allocation is relatively expensive!

public int run() {
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + new Object().hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 55

Counted Loop

• Iterating over an empty array list via a counter

• 0.937 < 0.939 < 0.943 CV%: 0.11 CR 90%: 0.937 <- 0.943
• This is essentially the cost of getting the size and noticing it’s 0

public int run() {
 List<Object> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 for (int j = 0, size = list.size(); j < size; ++j) {
 total += i + list.get(j).hashCode();
 }
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 56

For-each Loop

• Iterating over an empty array list via a counter

• 5.937 < 5.992 < 6.059 CV%: 0.42 CR 90%: 5.967 <- 6.059
• This 6 times slower, reflects the high cost of allocating the

iterator, though that’s much cheap than creating an object

public int run() {
 List<Object> list = this.list;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 for (Object object : list) {
 total += i + object.hashCode();
 }
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 57

Non-empty Loops

• We can repeat these tests with a list of size 10
– 46.579 < 46.932 < 47.340 CV%: 0.48 CR 90%: 46.669 <- 47.340
– 54.898 < 55.104 < 55.442 CV%: 0.32 CR 90%: 54.917 <- 55.442

• Given we know Object.hashCode takes 1.975
nanoseconds we can subtract the 10 calls and the
empty loop overhead
– 46.932 – 10 * 1.975 – 0.939 = 26.243
– 55.104 – 10 * 1.975 – 5.992 = 29.362

• The difference between those divided 10, i.e.,
0.331 nanoseconds, is the per-iteration overhead
of the iterator

14/05/2013 © Ed Merks | EDL V1.0 58

Old URI Implementation

• I recently revised EMF’s URI implementation

• 946.633 < 988.341 < 1,036.170 CV%: 2.25 CR 90%: 956.324 <- 1,036.170
• With forced System.gc outside the measurement runs

public int run() {
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i +
 (uris[repetition][i] =
 URI2.createURI(strings[repetition][i])).hashCode();
 }
 ++repetition;
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 59

New URI Implementation

• New URI implementation

• 720.208 < 746.296 < 783.516 CV%: 2.29 CR 90%: 722.827 <- 783.516
• It’s 25% faster than before (in this scenario/configuration)

public int run() {
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i +
 (uris[repetition][i] =
 URI.createURI(strings[repetition][i])).hashCode();
 }
 ++repetition;
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 60

New URI has Faster Equality

• URIs are often used as keys where equals is
used

• 4.628 < 4.638 < 4.659 CV%: 0.15 CR 90%: 4.629 <- 4.659
• 1.547 < 1.550 < 1.556 CV%: 0.13 CR 90%: 1.547 <- 1.556
• Factoring out the scaffolding, it’s 4 times faster.

public int run() {
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + (uri1.equals(choose[i & 3]) ? 1 : 0);
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 61

HashMap Get

• Getting a key’s value out of a map is fast

• 8.487 < 8.509 < 8.539 CV%: 0.16 CR 90%: 8.489 <- 8.539
• Factoring out scaffolding, 3.81 nanoseconds, as we’d expect

from Set.contains and String.hashCode measurements

public int run() {
 Map<Object, String> map = this.map;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + map.get(choose[i & 3]).hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 62

EObject eGet

• Getting a feature’s value out of an EObject is
faster

• 7.992 < 8.013 < 8.034 CV%: 0.15 CR 90%: 7.994 <- 8.034
• I.e., 2.685 nanoseconds without scaffolding, so ~30% faster than a

hash map lookup

public int run() {
 EObject eObject = this.eObject;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + eObject.eGet(choose[i & 3]).hashCode();
 }
 return total;
}

14/05/2013 © Ed Merks | EDL V1.0 63

Java Reflection

• Compare EMF reflection with Java reflection

• 11.813 < 11.849 < 11.897 CV%: 0.17 CR 90%: 11.825 <- 11.897

public int run() {
 try {
 Object object = this.object;
 int total = 0;
 for (int i = 0, count = this.count; i < count; ++i) {
 total += i + choose[i & 3].get(object).hashCode();
 }
 return total;
 } catch (Exception exception) {
 throw new RuntimeException(exception);
 }
}

14/05/2013 © Ed Merks | EDL V1.0 64

Don’t Be Fooled

• Suppose you noticed that 5% of a 2 minute
running application was spent in this method

• You might conclude you needed a map to
make it fast…

public Element getElement(String name) {
 for (Element element : getElements()) {
 if (name.equals(element.getName())) {
 return element;
 }
 }
 return null;
}

14/05/2013 © Ed Merks | EDL V1.0 65

Look Closely at the Details

• Upon closer inspection, you’d notice the
getter creates the list on demand

• You’d also notice that getName is not called all
that often, i.e., most lists are empty

public List<Element> getElements() {
 if (elements == null) {
 elements = new ArrayList<Element>();
 }
 return elements;
}

14/05/2013 © Ed Merks | EDL V1.0 66

It’s Fast Enough with a Map

• So you could rewrite it as follows

• It would take less than 1% of the time

public Element getElement(String name) {
 if (elements != null) {
 for (int i = 0, size = elements.size(); i < size; ++i) {
 Element element = elements.get(i);
 if (name.equals(element.getName())) {
 return element;
 }
 }
 }
 return null;
}

14/05/2013 © Ed Merks | EDL V1.0 67

Focus on What’s Important

• Conceive well-designed algorithms
– The JVM and the JIT will not turn O(n^2)

algorithms into O(n log n) algorithms
• Write clear maintainable code

– The JVM and the JIT are often smarter than you
are and can make your beautiful code fly

• Don’t make excuses
– The JIT shouldn’t need to determine your loop

invariants; don’t assume it will

14/05/2013 © Ed Merks | EDL V1.0 68

Measure, Measure, Measure

• You know nothing without measurements
• You cannot trust measurements taken in

isolation
• You cannot know what’s happening in detail

within a full application without disturbing the
very thing you’re measuring

• Despite the fact that you cannot trust your
measurements you cannot tune an application
without them

14/05/2013 © Ed Merks | EDL V1.0 69

Measurement Driven Focus

• Profilers help determine where your energy is
best spent

• Benchmarks help assess your progress and
your regressions

• Sometimes big things don’t matter at all
• Sometimes small things matter a lot

14/05/2013 © Ed Merks | EDL V1.0 70

Attributions: Thanks for the Flicks
• http://www.flickr.com/photos/jcarlosn/4528401347/sizes/l/in/photostream/
• http://www.flickr.com/photos/42000933@N02/6875870412/sizes/l/in/photostream/
• http://www.flickr.com/photos/jorgeguzman/144812237/sizes/l/in/photostream/
• http://www.flickr.com/photos/tomasino/7206225040/sizes/h/in/photostream/
• http://www.flickr.com/photos/veggiefrog/3667948537/sizes/l/in/photostream/
• http://www.flickr.com/photos/freddyfam/2540701577/sizes/l/in/photostream/
• http://www.flickr.com/photos/jeffk/25374399/sizes/l/in/photostream/
• http://www.flickr.com/photos/mikolski/3269906279/sizes/l/in/photostream/
• http://www.flickr.com/photos/katiew/320161805/sizes/z/in/photostream/
• http://www.flickr.com/photos/aaronjacobs/86952847/sizes/l/in/photostream/
• http://www.flickr.com/photos/seeminglee/8286759305/sizes/l/in/photostream/
• http://www.flickr.com/photos/cayusa/1209794692/sizes/l/in/photostream/
• http://www.flickr.com/photos/gurana/4442576424/sizes/l/in/photostream/
• http://www.flickr.com/photos/megangoodchild/6942503305/sizes/l/in/photostream/

14/05/2013 © Ed Merks | EDL V1.0 71

http://www.flickr.com/photos/42000933@N02/6875870412/sizes/l/in/photostream/
http://www.flickr.com/photos/42000933@N02/6875870412/sizes/l/in/photostream/
http://www.flickr.com/photos/jorgeguzman/144812237/sizes/l/in/photostream/
http://www.flickr.com/photos/tomasino/7206225040/sizes/h/in/photostream/
http://www.flickr.com/photos/veggiefrog/3667948537/sizes/l/in/photostream/
http://www.flickr.com/photos/freddyfam/2540701577/sizes/l/in/photostream/
http://www.flickr.com/photos/jeffk/25374399/sizes/l/in/photostream/
http://www.flickr.com/photos/mikolski/3269906279/sizes/l/in/photostream/
http://www.flickr.com/photos/katiew/320161805/sizes/z/in/photostream/
http://www.flickr.com/photos/aaronjacobs/86952847/sizes/l/in/photostream/
http://www.flickr.com/photos/seeminglee/8286759305/sizes/l/in/photostream/
http://www.flickr.com/photos/cayusa/1209794692/sizes/l/in/photostream/
http://www.flickr.com/photos/gurana/4442576424/sizes/l/in/photostream/
http://www.flickr.com/photos/megangoodchild/6942503305/sizes/l/in/photostream/

	The Art of �Java Performance �Tuning
	Java Performance is Complex
	Faster is Better
	Smaller is Better
	Faster and Smaller is Best
	Measuring
	Benchmarking
	Profiling
	Paranoia
	Don’t Trust Your Friends
	Don’t Trust Your Measurements
	Don’t Trust Yourself
	Don’t Trust the Experts
	Definitely Don’t Trust Me!
	Don’t Trust Anything
	Where Does That Leave You?
	There’s No Excuse for Bad Code
	Algorithmic Complexity
	Loop Invariants
	Generics Hide Casting
	Overriding Generic Methods
	Accessing Private Fields
	External Measurements
	Call It Less Often
	External Measurements
	Internal Measurements
	Micro Benchmarks
	Micro Benchmarks
	Micro Benchmarks
	Micro Measurements
	Platform
	The Simplest Micro Measurement
	Cache Field in Local Variable
	Questionable Conclusions
	Array Access
	Array Access Revised
	Array Assignment
	Method Call
	Method Call
	Array Verses List
	JIT Inlining
	What Can the JIT Inline?
	When Does the JIT Inline?
	How Does BasicEList Compare?
	How Expensive is Casting?
	How Expensive is Actual Casting?
	Method Call Revisited
	So How Expensive is Casting Really?
	Casting is Hard to Measure!
	O(n) With a Large Constant
	O(n) With a Small Constant
	O(1) List Contains
	O(1) HashSet Contains
	Synchronize: Thread Safety
	Object Allocation
	Counted Loop
	For-each Loop
	Non-empty Loops
	Old URI Implementation
	New URI Implementation
	New URI has Faster Equality
	HashMap Get
	EObject eGet
	Java Reflection
	Don’t Be Fooled
	Look Closely at the Details
	It’s Fast Enough with a Map
	Focus on What’s Important
	Measure, Measure, Measure
	Measurement Driven Focus
	Attributions: Thanks for the Flicks

