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Java Performance is Complex 

• Write once run everywhere 
– Java is slow because it’s interpreted 

• No, there are Just In Time (JIT) compilers 

– Different hardware and platforms 
– Different JVMs 

• Different tuning options 

– Different language versions 
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Faster is Better 
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Smaller is Better 
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Measuring 
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Benchmarking 
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Profiling 
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Don’t Trust Your Friends 

• Your friends are stupid 
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Don’t Trust Yourself 

• You know nothing 
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Don’t Trust the Experts 

• The experts are misguided 

14/05/2013 © Ed Merks | EDL V1.0 13 



Definitely Don’t Trust Me! 
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Don’t Trust Anything 

• Everything that’s true today might be false 
tomorrow 

• Whatever you verify is true today is false 
somewhere else 
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Where Does That Leave You? 

• Don’t worry 
• Be happy 
• Write sloppy code and place blame elsewhere 

– Java 
– The hardware 
– The platform 
– JVM 
– Poor tools 
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• How does the performance scale relative to the 
growth of the input? 
 

– O(1) – hashed lookup 
– O(log n) – binary search 
– O(n) – list contains 
– O(n log n) – efficient sorting 
– O(n^2) – bubble sorting 
– O(2^n) – combinatorial explosion 

 

• No measurement is required 
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Loop Invariants 

• Don’t do something in a loop you that can do 
outside the loop 
 
 
 
 

• Learn to use Alt-Shift-↑ and Alt-Shift-L  

public NamedElement find(NamedElement namedElement){ 
 for (NamedElement otherNamedElement : getNamedElements()) { 
   if (namedElement.getName().equals(otherNamedElement.getName())) { 
     return otherNamedElement; 
   } 
 } 
 return null; 
} 
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Generics Hide Casting 

• Java 5 hides things in the source, but it 
doesn’t make that free at runtime 
 
 
 
 
 

 
• Not just the casting is hidden but the iterator too 

public NamedElement find(NamedElement namedElement) { 
  String name = namedElement.getName(); 
  for (NamedElement otherNamedElement : getNamedElements()) { 
    if (name.equals(otherNamedElement.getName())) { 
      return otherNamedElement; 
    } 
  } 
  return null; 
} 
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Overriding Generic Methods 

• Overriding a generic method often results in 
calls through a bridge method 
– That bridge method does casting which isn’t free 

 new HashMap<String, Object>() { 
  @Override 
  public Object put(String key, Object value)  { 
    return super.put(key == null ? null : key.intern(), value); 
  } 
}; 
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Accessing Private Fields 

• Accessing a private field of another class 
implies a method call 
public static class Context { 
  private class Point { 
    private int x; 
    private int y; 
  } 
   

  public void compute() 
  { 
    Point point = new Point(); 
    point.x = 10; 
    point.y = 10; 
  } 
} 
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External Measurements 

• Profiling 
– Tracing 

• Each and every (unfiltered) call in the process is 
carefully tracked and recorded 

• Detailed counts and times, but is slow, and intrusive, 
and doesn’t reliably reflect non-profiled performance 

– Sampling 
• The running process is periodically sampled to give a 

statistical estimate of where the time is being spent 
• Fast and unintrusive, but unreliable beyond hot spot 

identification 
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Call It Less Often 

• Before you focus on making something faster 
focus on calling it less often 
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External Measurements 

• Consider using YourKit 
– They support* open source 
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Internal Measurements 

• Clock-based measurements 
– System.currentTimeMillis 
– System.nanoTime (Java 1.5) 

• Accuracy verses Precision 
– Nanoseconds are more precise than milliseconds 
– But you can’t trust the accuracy of either 
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Micro Benchmarks 

• Measuring small bits of logic to draw 
conclusions about which approach performs 
best 
– These are fraught with problems 
– The same JIT will produce very different results in 

isolation from what it does in real life 
– The hardware may produce very different results 

in isolation from what it does in a real application 
– You simply can’t measure threading reliably 
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Micro Benchmarks 

• The JIT will turn your code into a very cheap 
no-op 
– Your benchmark must compute a result visible to 

the harness 

• Because the clocks are inaccurate you must 
execute for a long time 
– That typically implies doing something in a loop 

and then of course you’re measuring the loop 
overhead too 
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Micro Benchmarks 

• Do as much as possible outside the 
benchmark and outside the loop 

• You want to know the performance of the 
compiled code, not the interpreted code 
– You need a warmup  

• Use -XX:+PrintCompilation 

– Beware the garbage collector 
• Use -verbose:gc 
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Micro Measurements 

• I wrote a small benchmark harness 
– http://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/tests/org.eclipse.

emf.test.core/src/org/eclipse/emf/test/core/BenchmarkHarness.java 

– Write a class that extends Benchmark and 
implements run 

– The harness runs the benchmark to determine 
many times it must run to use approximately a 
minimum of one second 

– Then it runs it repeatedly, gathering statistics 
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Platform 

• Hardware 
 

• OS 
 

• JVM 
 
 

 
 

java version "1.6.0_32" 
Java(TM) SE Runtime Environment (build 1.6.0_32-b05) 
Java HotSpot(TM) 64-Bit Server VM (build 20.7-b02, mixed mode) 

Intel Core i7-2920XM CPU @ 2.5Ghz 

Windows 7 Professional 
Service Pack 1 
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The Simplest Micro Measurement 

• This is the simplest thing you can measure 
 
 
 
 
 
 
 
 

• 0.348 < 0.348 < 0.350 CV%: 0.00 CR 95%: 0.348 <- 0.350 

 

 public static class CountedLoop extends Benchmark { 
    public CountedLoop() { super(1000000); } 
 

     @Override 
    public int run() { 
      int total = 0; 
      for (int i = 0; i < count; ++i) { 
        total += i; 
      } 
      return total; 
    } 
 

     @Override 
    public String getLogic() { 
      return "total += i;"; 
    } 
  } 
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Cache Field in Local Variable 

• I heard that caching a repeatedly-accessed 
field in a local variable improves performance 
 
 
 
 

• 0.328 < 0.329 < 0.330 CV%: 0.00 CR 95%: 0.328 <- 0.330 
• 10% faster 

public int run() { 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i; 
  } 
  return total; 
} 
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Questionable Conclusions 

• Depending on the order in which I run the 
benchmarks together, I get different results 
 
 
 
 

• In isolation they perform the same 
• In combination, whichever is first is faster  

public static void main(String[] args) { 
  Benchmark[] benchmarks = { 
        new CountedLoop(), 
        new CountedLoopWithLocalCounter(), 
  }; 
  new BenchmarkHarness(1).run(20, benchmarks); 
} 
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Array Access 

• Let’s measure the cost of accessing an array 
 
 
 
 

• 0.315 < 0.317 < 0.325 CV%: 0.63 CR 90%: 0.316 <- 0.325 
• Hmmm, it takes negative time to access an array 

 public int run() { 
   int[] array = this.array; 
   int total = 0; 
   for (int i = 0, count = this.count; i < count; ++i) { 
     total += array[i]; 
   } 
   return total; 
 } 
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Array Access Revised 

• Let’s try again 
 
 
 
 

• 0.498 < 0.499 < 0.504 CV%: 0.20 CR 90%: 0.498 <- 0.504 

• Subtracting out the cost of the scaffolding, we could 
conclude that array access takes 0.151 nanoseconds 

 public int run() { 
   int[] array = this.array; 
   int total = 0; 
   for (int i = 0, count = this.count; i < count; ++i) { 
     total += i + array[i]; 
   } 
   return total; 
 } 
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Array Assignment 

• Let’s measure array assignment 
 
 
 
 

• 0.793 < 0.795 < 0.798 CV%: 0.13 CR 90%: 0.793 <- 0.798 

• We could conclude that array assignment 
takes 0.296 nanoseconds 

public int run() { 
  int[] array = this.array; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    array[i] = total += i + array[i]; 
  } 
  return total; 
} 
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Method Call 

• How expensive is calling a method? 
 
 
 
 
 

• 5.308 < 5.328 < 5.362 CV%: 0.24 CR 90%: 5.315 <- 5.362 
• We could conclude that this method call takes 

4.829 nanoseconds 

public int run() { 
  String[] array = this.array; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + array[i].hashCode(); 
  } 
  return total; 
} 
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Method Call 

• How expensive is calling a native method? 
 
 
 
 
 

• 2.442 < 2.456 < 2.480 CV%: 0.45 CR 90%: 2.443 <- 2.480  
• We could conclude that this native method call 

takes 1.975 nanoseconds 

public int run() { 
  Object[] array = this.array; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + array[i].hashCode(); 
  } 
  return total; 
} 

14/05/2013 © Ed Merks | EDL V1.0 39 



Array Verses List 

• How fast is an array list compare to an array 
 
 
 
 
 

• 5.565 < 5.617 < 5.703 CV%: 0.69 CR 90%: 5.568 <- 5.703 

• We could conclude that calling get(i) takes 0.289 
nanoseconds 

public int run() { 
  ArrayList<String> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + list.get(i).hashCode(); 
  } 
  return total; 
} 
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JIT Inlining 

• How can calling String.hashCode take 4.829 
nanoseconds while calling ArrayList.get takes 
0.289 nanoseconds? 
– That’s 95% faster, and hashCode doesn’t do much 
– Inlining 

• java.util.ArrayList::RangeCheck (48 bytes) 
• java.util.ArrayList::get (12 bytes) 

• You never know whether the JIT will inline 
your calls but the difference is dramatic 
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What Can the JIT Inline? 

• Calls to relatively small methods which is 
influenced by server mode and by JVM options 

• Calls to static methods which are always final 
• Calls to methods implicitly or explicitly via this or 

super when the JIT can infer final 
• Calls to methods declared in other classes, if final 

can be inferred 
• Calls to methods on interfaces 

– That depends on how many classes implement the 
interface, i.e., how well final can be inferred 
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When Does the JIT Inline? 

• Only after many calls to a method, i.e., on the 
order of 10,000 

• The JIT focuses on methods whose 
improvement will have a significant overall 
impact 

• Loading of classes can impact the 
determination of finalness of methods such 
that optimizations may need to be reverted 
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How Does BasicEList Compare? 

• How fast is EMF’s BasicEList relative to ArrayList 
 
 
 
 
 
 

• 5.567 < 5.580 < 5.599 CV%: 0.14 CR 90%: 5.572 <- 5.599 
• Quite well, but there are many subclasses! 

public int run() { 
  BasicEList<String> eList = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + eList.get(i).hashCode(); 
  } 
  return total; 
} 

14/05/2013 © Ed Merks | EDL V1.0 44 



How Expensive is Casting? 

• First let’s measure this as a baseline 
 
 
 
 
 

• 5.946 < 5.967 < 6.001 CV%: 0.22 CR 90%: 5.953 <- 6.001 
• Note that calling charAt is 0.639 nanoseconds slower 

than calling hashCode 
 

public int run() { 
  String[] array = this.array; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + array[i].charAt(0); 
  } 
  return total; 
} 
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How Expensive is Actual Casting? 

• Here the call to get really must cast to a String 
 
 
 
 
 

• 6.004 < 6.037 < 6.127 CV%: 0.50 CR 90%: 6.006 <- 6.127 
• That’s just a 0.07 nanosecond difference, i.e., smaller than 

we’d expect for array verses list, so casting is very cheap 
 

public int run() { 
  ArrayList<String> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + list.get(i).charAt(0); 
  } 
  return total; 
} 
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Method Call Revisited 

• Let’s measure method calls again 
 
 
 
 
 

• 20.154 < 20.181 < 20.266 CV%: 0.12 CR 90%: 20.158 <- 20.266 
• Wow, that took long! Calling getName takes 14.853 

nanoseconds 

public int run() { 
  ENamedElement[] array = this.array; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + array[i].getName().hashCode(); 
  } 
  return total; 
} 
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So How Expensive is Casting Really? 

• Let’s measure that using a list 
 
 
 
 
 

• 19.549 < 19.613 < 19.841 CV%: 0.30 CR 90%: 19.566 <- 19.841 
• It’s faster, until my machine nearly catches fire, and then it’s 

the same, so casting is apparently free.  Hmmm…. 

public int run() { 
  List<ENamedElement> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + list.get(i).getName().hashCode(); 
  } 
  return total; 
} 

14/05/2013 © Ed Merks | EDL V1.0 48 



Casting is Hard to Measure! 

• I heard from experts that the cost of casting 
depends on… 
– The complexity of the runtime hierarchy  

• I’ve been told that an object remembers what it 
was cast to recently and can be cast again more 
quickly so one should avoid “ping pong” casting 

• In any case, casting is much faster today than it 
was 10 years ago, when it was shockingly slow 
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O(n) With a Large Constant 

• Contains testing on a list is O(n), for n 1000 
 
 
 
 
 

• 3,544.660 < 3,562.194 < 3,692.060 CV%: 0.90 CR 90%: 3,545.132 <- 3,692.060 

public int run() { 
  List<ENamedElement> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (list.contains(lastENamedElement) ? 1 : 0); 
  } 
  return total; 
} 
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O(n) With a Small Constant 

• Contains testing on a list is O(n), for n 1000 

 
 
 
 

• 365.123 < 365.948 < 367.809 CV%: 0.18 CR 90%: 365.194 <- 367.809 
• It’s ~10 times faster because it uses == rather than Object.equals!   
• And that’s why you can’t override EObject.equals 

public int run() { 
  BasicEList.FastCompare<ENamedElement> eList = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (eList.contains(lastENamedElement) ? 1 : 0); 
  } 
  return total; 
} 
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O(1) List Contains 

• Contains testing on a containment list is O(1), for any 
value of n, here 1000 

 
 
 
 

• 4.733 < 4.750 < 4.820 CV%: 0.38 CR 90%: 4.740 <- 4.820 
• It’s another ~75 times faster because an EObject knows whether or 

not it’s in a containment list 

public int run() { 
  EObjectContainmentEList<ENamedElement> eList = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (eList.contains(lastENamedElement) ? 1 : 0); 
  } 
  return total; 
} 
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O(1) HashSet Contains 

• Contains testing on a HashSet is always O(1) 
 
 
 
 
 

• 5.758 < 5.775 < 5.797 CV%: 0.16 CR 90%: 5.765 <- 5.797 
• It takes 5.276 nanoseconds to do a contains test; it’s still 

slower than a containment list’s contains testing… 

public int run() { 
  HashSet<ENamedElement> set = this.set; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (set.contains(lastENamedElement) ? 1 : 0); 
  } 
  return total; 
} 
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Synchronize: Thread Safety 

• Suppose we used Collections.synchronizedSet 
 
 
 
 
 
 

• 26.309 < 26.400 < 26.592 CV%: 0.24 CR 90%: 26.336 <- 26.592 
• It takes ~20 nanoseconds to do the synchronize, even with only a 

single thread using this set 
• Even with a derived class that simply overrides contains, rather than 

a wrapper, I get the same result 

public int run() { 
  Set<ENamedElement> set = this.set; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (set.contains(lastENamedElement) ? 1 : 0); 
  } 
  return total; 
} 
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Object Allocation 

• Creating just a plain old Object 
 
 
 
 

• 46.684 < 47.113 < 49.081 CV%: 1.32 CR 90%: 46.738 <- 49.081 
• It’s hard to avoid measuring GC impact 
• Allocation is relatively expensive! 

 

public int run() { 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + new Object().hashCode(); 
  } 
  return total; 
} 
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Counted Loop 

• Iterating over an empty array list via a counter 
 
 
 
 
 

• 0.937 < 0.939 < 0.943 CV%: 0.11 CR 90%: 0.937 <- 0.943 
• This is essentially the cost of getting the size and noticing it’s 0 

public int run() { 
  List<Object> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    for (int j = 0, size = list.size(); j < size; ++j) { 
      total += i + list.get(j).hashCode(); 
    }  
  } 
  return total; 
} 
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For-each Loop 

• Iterating over an empty array list via a counter 
 
 
 
 
 
 

• 5.937 < 5.992 < 6.059 CV%: 0.42 CR 90%: 5.967 <- 6.059 
• This 6 times slower, reflects the high cost of allocating the 

iterator, though that’s much cheap than creating an object 

public int run() { 
  List<Object> list = this.list; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    for (Object object : list) { 
      total += i + object.hashCode(); 
    } 
  } 
  return total; 
} 
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Non-empty Loops 

• We can repeat these tests with a list of size 10 
– 46.579 < 46.932 < 47.340 CV%: 0.48 CR 90%: 46.669 <- 47.340 
– 54.898 < 55.104 < 55.442 CV%: 0.32 CR 90%: 54.917 <- 55.442 

• Given we know Object.hashCode takes 1.975 
nanoseconds we can subtract the 10 calls and the 
empty loop overhead 
–  46.932 – 10 * 1.975 – 0.939 = 26.243 
–  55.104 – 10 * 1.975 – 5.992 = 29.362 

• The difference between those divided 10, i.e., 
0.331 nanoseconds, is the per-iteration overhead 
of the iterator 
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Old URI Implementation 

• I recently revised EMF’s URI implementation 
 
 
 
 
 
 

• 946.633 < 988.341 < 1,036.170 CV%: 2.25 CR 90%: 956.324 <- 1,036.170 
• With forced System.gc outside the measurement runs 

public int run() { 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i)  { 
    total += i +  
     (uris[repetition][i] =  
        URI2.createURI(strings[repetition][i])).hashCode(); 
  } 
  ++repetition; 
  return total; 
} 

14/05/2013 © Ed Merks | EDL V1.0 59 



New URI Implementation 

• New URI implementation 
 
 
 
 
 

• 720.208 < 746.296 < 783.516 CV%: 2.29 CR 90%: 722.827 <- 783.516 
• It’s 25% faster than before (in this scenario/configuration) 

public int run() { 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i)  { 
    total += i +  
     (uris[repetition][i] =  
        URI.createURI(strings[repetition][i])).hashCode(); 
  } 
  ++repetition; 
  return total; 
} 
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New URI has Faster Equality 

• URIs are often used as keys where equals is 
used 
 
 
 
 

• 4.628 < 4.638 < 4.659 CV%: 0.15 CR 90%: 4.629 <- 4.659 
• 1.547 < 1.550 < 1.556 CV%: 0.13 CR 90%: 1.547 <- 1.556 
• Factoring out the scaffolding, it’s 4 times faster. 

 

public int run() { 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + (uri1.equals(choose[i & 3]) ? 1 : 0); 
  } 
  return total; 
} 
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HashMap Get 

• Getting a key’s value out of a map is fast 
 
 
 
 
 

• 8.487 < 8.509 < 8.539 CV%: 0.16 CR 90%: 8.489 <- 8.539 
• Factoring out scaffolding, 3.81 nanoseconds, as we’d expect 

from Set.contains and String.hashCode measurements 

public int run() { 
  Map<Object, String> map = this.map; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i) { 
    total += i + map.get(choose[i & 3]).hashCode(); 
  } 
  return total; 
} 
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EObject eGet 

• Getting a feature’s value out of an EObject is 
faster 
 
 
 
 
 

• 7.992 < 8.013 < 8.034 CV%: 0.15 CR 90%: 7.994 <- 8.034 
• I.e., 2.685 nanoseconds without scaffolding, so ~30% faster than a 

hash map lookup 

public int run() { 
  EObject eObject = this.eObject; 
  int total = 0; 
  for (int i = 0, count = this.count; i < count; ++i)  { 
    total += i + eObject.eGet(choose[i & 3]).hashCode(); 
  } 
  return total; 
} 
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Java Reflection 

• Compare EMF reflection with Java reflection 
 
 
 
 
 
 
 
 
 

• 11.813 < 11.849 < 11.897 CV%: 0.17 CR 90%: 11.825 <- 11.897 

public int run() { 
  try { 
    Object object = this.object; 
    int total = 0; 
    for (int i = 0, count = this.count; i < count; ++i) { 
      total += i + choose[i & 3].get(object).hashCode(); 
    } 
    return total; 
  } catch (Exception exception) { 
    throw new RuntimeException(exception); 
  } 
} 
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Don’t Be Fooled 

• Suppose you noticed that 5% of a 2 minute 
running application was spent in this method 
 
 
 
 

• You might conclude you needed a map to 
make it fast… 
 

public Element getElement(String name) { 
  for (Element element : getElements())  { 
    if (name.equals(element.getName())) { 
       return element; 
    } 
  } 
  return null; 
} 
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Look Closely at the Details 

• Upon closer inspection, you’d notice the 
getter creates the list on demand 
 
 
 
 

• You’d also notice that getName is not called all 
that often, i.e., most lists are empty 

public List<Element> getElements() { 
  if (elements == null) { 
    elements = new ArrayList<Element>(); 
  } 
  return elements; 
} 
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It’s Fast Enough with a Map 

• So you could rewrite it as follows 
 
 
 
 
 
 

• It would take less than 1% of the time 
 

public Element getElement(String name) { 
  if (elements != null) { 
    for (int i = 0, size = elements.size(); i < size; ++i) { 
      Element element = elements.get(i); 
      if (name.equals(element.getName())) { 
        return element; 
      } 
    } 
  } 
  return null; 
} 
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Focus on What’s Important 

• Conceive well-designed algorithms 
– The JVM and the JIT will not turn O(n^2) 

algorithms into O(n log n) algorithms 
• Write clear maintainable code 

– The JVM and the JIT are often smarter than you 
are and can make your beautiful code fly 

• Don’t make excuses 
– The JIT shouldn’t need to determine your loop 

invariants; don’t assume it will 
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Measure, Measure, Measure 

• You know nothing without measurements 
• You cannot trust measurements taken in 

isolation  
• You cannot know what’s happening in detail 

within a full application without disturbing the 
very thing you’re measuring 

• Despite the fact that you cannot trust your 
measurements you cannot tune an application 
without them 
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Measurement Driven Focus 

• Profilers help determine where your energy is 
best spent 

• Benchmarks help assess your progress and 
your regressions 

• Sometimes big things don’t matter at all 
• Sometimes small things matter a lot 
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