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Introduction

• OSGi: a dynamic module system for Java
• Modular:

– Bundles, JAR files with meta-data
– Strict visibility for types, based on packages
– Versioning of both packages and bundles

• Dynamic:
– Add, remove, start, stop bundles at runtime
– Use shared services to share objects, not just 

types
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History of OSGi 

• Open Specification managed by OSGi Alliance
– Founded in March 1999

• Based on the realized need for light weight 
dynamic platform
– Initially targeted network and embedded devices

– Since 2006, server side adoption

• Member companies
– IBM, SpringSource, Motorolla, Oracle, Tibco etc. . .
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Bundle MANIFEST.MF

• Bundles use JAR Manifest for meta-data
Manifest-Version: 1.0
Bundle-Version: 1.0.0
Bundle-Name: My First Bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.first.bundle
...

Manifest-Version: 1.0
Bundle-Version: 1.0.0
Bundle-Name: My First Bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.first.bundle
...

• By default, such a bundle is a black box
– Its types are invisible to other bundles
– It can't see any types besides its own
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Inter-bundle Visibility: Exports

• To make types available to other bundles, 
export their packages

Export-Package: my.first.bundle.apiExport-Package: my.first.bundle.api

• Can also version the package(s)

• To make types available to other bundles, 
export their packages

Export-Package: my.first.bundle.api;version=1.0.0,
 my.first.bundle.util;version=1.2.3
Export-Package: my.first.bundle.api;version=1.0.0,
 my.first.bundle.util;version=1.2.3
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Exporting Best Practices

• Best practice: 
separate interfaces from implementations
– Put in different packages
– Only export public API, hide internal details
– Expose implementations as services

• Best Practice:
apply versions to your packages
– Allows multiple versions in the same runtime
– Clients can pick the version they need
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Inter-bundle Visibility: Imports

• To access types from other bundles, 
import their packages

Bundle-SymbolicName: some.client.bundle
Import-Package: my.first.bundle.api
Bundle-SymbolicName: some.client.bundle
Import-Package: my.first.bundle.api

– Can also specify version range

Import-Package: my.first.bundle.api;version="[1.0.0, 2.0.0)"Import-Package: my.first.bundle.api;version="[1.0.0, 2.0.0)"

– Single version means 'at least'
– [] for inclusive, () for exclusive boundaries

• Best practice: pick good version range
– What versions will work? Too narrow or wide?
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OSGi Visibility

• Adds true encapsulation and versioning to 
your applications
– Preserves modularity at runtime

• No longer restricted to a single, linear 
classpath
– Each bundle gets its own ClassLoader

• All managed by the OSGi container
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OSGi Containers

• Provide the runtime for OSGi bundles
• Small core with additional services

– Typically very lightweight

• Well-known OSS implementations:
– Equinox
– Apache Felix
– Knopflerfish
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OSGi Dynamics

• Bundles can be installed into container
• Have a managed lifecycle

– Installed (just present, missing dependencies)
– Resolved (stopped, all dependencies satisfied)
– Starting
– Started (services now also available)
– Stopping
– Uninstalled (gone after restart or refresh)
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OSGi Lifecycle

• Bundles can receive callbacks when 
started or stopped

public class MyActivator implements BundleActivator {
    public void start(BundleContext context) throws Exception {
        // ...
    }
    public void stop(BundleContext context) throws Exception {
        // …
    }
}

public class MyActivator implements BundleActivator {
    public void start(BundleContext context) throws Exception {
        // ...
    }
    public void stop(BundleContext context) throws Exception {
        // …
    }
}

Bundle-Activator: some.client.bundle.MyActivatorBundle-Activator: some.client.bundle.MyActivator

• Register in manifest
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OSGi BundleContext

• BundleContext is API of OSGi runtime
• Work with bundles and services

– (un)install, start/stop bundles
– Register services and obtain references

• Register listeners to be notified of 
interesting events
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DEMO

Using plain OSGi bundles to share types and 
services
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OSGi & Spring

• OSGi provides nice runtime
– but lacks component model

• Spring provides component model
– but does not define the runtime

• Spring Dynamic Modules marries the two
– Use familiar Spring programming model in 

OSGi!
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Spring Dynamic Modules

• (or Spring-DM for short)
• Removes most OSGi-dependencies from 

your code
– Best Practice: Proper Separation of Concerns

• Creates ApplicationContext per bundle
• Declarative service management
• And much more
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Spring-DM Service 
Management

• Exposes Spring beans as services
– Full control over interface, properties, etc.

• Creates proxies for service references
– No more manual management of service 

dynamics!
– Saves lots of plumbing code in a typical 

Spring fashion
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Spring-DM Configuration

• Spring config files go in META-INF/spring
– Will be picked up automatically

• osgi: namespace for service export/ref

<bean id="myService" class="some.bundle.internal.MyServiceImpl">
    <property name="serviceDependency" ref="serviceDependency"/>
</bean>

<!-- Creates dynamic proxy for OSGi service with given interface -->
<osgi:reference id="serviceDependency" 
                          interface="other.bundle.ServiceDependency"/>

<!-- Exposes our Spring bean as OSGi service under its interfaces -->
<osgi:service ref="myService"
                      interface="some.bundle.MyService"/>

<bean id="myService" class="some.bundle.internal.MyServiceImpl">
    <property name="serviceDependency" ref="serviceDependency"/>
</bean>

<!-- Creates dynamic proxy for OSGi service with given interface -->
<osgi:reference id="serviceDependency" 
                          interface="other.bundle.ServiceDependency"/>

<!-- Exposes our Spring bean as OSGi service under its interfaces -->
<osgi:service ref="myService"
                      interface="some.bundle.MyService"/>
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Spring-DM Configuration

• Best Practice:
Separate normal Spring config files from 
Spring-DM config files
– Test or even reuse of modules without OSGi
– Esp. if ids of beans backing services are the 

same as <osgi:reference> ids

<bean id="myService" 
      class="samples.internal.MyServiceImpl"/>
<bean id="myService" 
      class="samples.internal.MyServiceImpl"/>

Bundle A, file module-context.xml:

<osgi:service ref="myService"
             interface="samples.MyService"/>
<osgi:service ref="myService"
             interface="samples.MyService"/>

Bundle A, file osgi-context.xml:

<bean id="myClient" class="...">
    <constructor-arg ref="myService"/>
</bean>

<bean id="myClient" class="...">
    <constructor-arg ref="myService"/>
</bean>

Bundle B, file module-context.xml:

<osgi:reference id="myService"
               interface="samples.MyService"/>
<osgi:reference id="myService"
               interface="samples.MyService"/>

Bundle B, file osgi-context.xml:
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DEMO

Using Spring Dynamic Modules to share types 
and services
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Enterprise OSGi

• OSGi features are appealing to Enterprise 
Java developers as well
– True modules instead of monolithic 

deployments
– True dynamics that don't require constant 

restarts

• Most applications servers already use 
OSGi internally
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Enterprise OSGi Issues

• Pure OSGi doesn't mix with Enterprise 
Java very well
– Incompatible classloading models
– OSGi has hardly any web support
– Bunch of bundles is not a good deployment 

model
– Enterprise Libraries not available as bundles

• New products and standards are 
emerging to address this
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Enterprise OSGi Products

• SpringSource dm Server
– Pioneered OSGi in an Enterprise Java setting

– Web Support, Thread Context Classloader mgmt, PAR 
deployment format, Bundle provisioning, ...

• Paremus Service Fabric
– SCA Support

– Advanced clustering / cloud capabilities

• Various Open Source Projects
– Apache Aries
– OPS4J PAX has several relevant projects
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Enterprise OSGi Standards

• Enterprise Expert Group produces new 
specifications
– RFC 66: Web Support (RI: dm Server 2.0)
– RFC 112: Bundle Repository
– RFC 119: Distributed OSGi
– RFC 124: Blueprints (RI: Spring-DM 2.0)
– RFC 139: JMX interface for OSGi
– RFC 142: JNDI integration

• At the same time, much innovation is 
happening
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Enterprise OSGi

• Best Practice:
Enterprise OSGi is harder than you think, 
don't build your own platform
– Getting e.g. JPA libraries to work reliably is 

very challenging
– Think about runtime management as well

• Check your options and choose for 
yourself based on your requirements
– Obviously we prefer dm Server
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DEMO

Developing a multi-bundle web application with 
SpringSource dm Server
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Best Practices

• So much for the tech talk, but how do 
you apply this?

• Some best practices were given already
• Here follows some more high-level advice 

on how to design your modules
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How To Modularize

• How to split up your application in 
bundles is not an easy question to 
answer

• Question is really how to partition and 
what granularity to use
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Partitioning Into Bundles

Partitioning can be done in different ways:
• Vertical: functional partitioning

– For example orders, warehouse, billing and CRM

• Horizontal: technical partitioning
– Web, services, repositories, infrastructure

• A combination of the two
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Vertical Partitioning

• Bundles represent functional modules
• Preferred approach for big enough 

applications
– Single module assignable to a team of developers
– Encapsulates internals like repositories

• OrderRepository only needed in 'order' module

– Minimizes module's “surface area”
• Only needs to expose its business interfaces

• Might not work well for small applications
– Might not need partitioning in the first place
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Horizontal Partitioning

• Bundles represent architectural layers
• Natural approach to many developers

– Tend to think of layers as modules already

• Allows for replacing layers easily
– For testing or during early development
– Deploy stubbed repository bundle without 

changing services module

• Typically means more maintenance
– Use cases spread across multiple bundles
– So changes often span bundle boundaries
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Web Modules

• Web Resources like JSPs cannot be split 
across multiple bundles in dm Server 1.0
– Not for single ServletContext / HttpSession at least

• Must use single WAR / web module
– Even when using vertical partitioning!

• dm Server 2.0 will offer slices support
– Allowing for truly modular web applications
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Infrastructure Bundles

• Most applications use shared infrastructure 
across functional, vertical slices
– Same DataSource, transaction manager, JMS 

ConnectionFactory, etc.

• Creating infrastructure bundle(s) makes 
sense
– Even when using vertical partitioning: there's no 

JNDI registry with globally defined resources!
– Simply expose resources as OSGi services
– By application developers or operations team
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Bundle Granularity (1)

• How much stuff goes in one bundle
• Use same rules as for object orientation

– Bundles need to have a clear responsibility
– High cohesion within a bundle
– Loose coupling between bundles

• Works well with vertical partitioning
– Horizontal tends to increase dependencies 

between bundles
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Bundle Granularity (2)

• Easy to make modules too fine-grained
– Often seen in samples and labs

• To show how OSGi works

– Doesn't necessarily represent best practice!
– Better to extract extra bundle later if desired

• Typically shouldn't create bundle if non-
OSGi application wouldn't have dedicated 
jar for the same code
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See “dm Server 2” Presentation
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Summary

• OSGi brings true modularity and 
dynamics to your applications

• Many potential benefits, but not always 
easy to gain these

• Enterprise OSGi is an upcoming area of 
great interest to many developers

• New products and standards new 
emerging
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