
Copyright 2005-2008 SpringSource. Copying, publishing or distributing without express written permission is prohibit

Modular Java Applications with
Spring, dm Server and OSGi

2

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

3

Introduction

• OSGi: a dynamic module system for Java
• Modular:

– Bundles, JAR files with meta-data
– Strict visibility for types, based on packages
– Versioning of both packages and bundles

• Dynamic:
– Add, remove, start, stop bundles at runtime
– Use shared services to share objects, not just

types

4

History of OSGi

• Open Specification managed by OSGi Alliance
– Founded in March 1999

• Based on the realized need for light weight
dynamic platform
– Initially targeted network and embedded devices

– Since 2006, server side adoption

• Member companies
– IBM, SpringSource, Motorolla, Oracle, Tibco etc. . .

5

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• Summary

6

Bundle MANIFEST.MF

• Bundles use JAR Manifest for meta-data
Manifest-Version: 1.0
Bundle-Version: 1.0.0
Bundle-Name: My First Bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.first.bundle
...

Manifest-Version: 1.0
Bundle-Version: 1.0.0
Bundle-Name: My First Bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.first.bundle
...

• By default, such a bundle is a black box
– Its types are invisible to other bundles
– It can't see any types besides its own

7

Inter-bundle Visibility: Exports

• To make types available to other bundles,
export their packages

Export-Package: my.first.bundle.apiExport-Package: my.first.bundle.api

• Can also version the package(s)

• To make types available to other bundles,
export their packages

Export-Package: my.first.bundle.api;version=1.0.0,
 my.first.bundle.util;version=1.2.3
Export-Package: my.first.bundle.api;version=1.0.0,
 my.first.bundle.util;version=1.2.3

8

Exporting Best Practices

• Best practice:
separate interfaces from implementations
– Put in different packages
– Only export public API, hide internal details
– Expose implementations as services

• Best Practice:
apply versions to your packages
– Allows multiple versions in the same runtime
– Clients can pick the version they need

9

Inter-bundle Visibility: Imports

• To access types from other bundles,
import their packages

Bundle-SymbolicName: some.client.bundle
Import-Package: my.first.bundle.api
Bundle-SymbolicName: some.client.bundle
Import-Package: my.first.bundle.api

– Can also specify version range

Import-Package: my.first.bundle.api;version="[1.0.0, 2.0.0)"Import-Package: my.first.bundle.api;version="[1.0.0, 2.0.0)"

– Single version means 'at least'
– [] for inclusive, () for exclusive boundaries

• Best practice: pick good version range
– What versions will work? Too narrow or wide?

10

OSGi Visibility

• Adds true encapsulation and versioning to
your applications
– Preserves modularity at runtime

• No longer restricted to a single, linear
classpath
– Each bundle gets its own ClassLoader

• All managed by the OSGi container

11

OSGi Containers

• Provide the runtime for OSGi bundles
• Small core with additional services

– Typically very lightweight

• Well-known OSS implementations:
– Equinox
– Apache Felix
– Knopflerfish

12

OSGi Dynamics

• Bundles can be installed into container
• Have a managed lifecycle

– Installed (just present, missing dependencies)
– Resolved (stopped, all dependencies satisfied)
– Starting
– Started (services now also available)
– Stopping
– Uninstalled (gone after restart or refresh)

13

OSGi Lifecycle

• Bundles can receive callbacks when
started or stopped

public class MyActivator implements BundleActivator {
 public void start(BundleContext context) throws Exception {
 // ...
 }
 public void stop(BundleContext context) throws Exception {
 // …
 }
}

public class MyActivator implements BundleActivator {
 public void start(BundleContext context) throws Exception {
 // ...
 }
 public void stop(BundleContext context) throws Exception {
 // …
 }
}

Bundle-Activator: some.client.bundle.MyActivatorBundle-Activator: some.client.bundle.MyActivator

• Register in manifest

14

OSGi BundleContext

• BundleContext is API of OSGi runtime
• Work with bundles and services

– (un)install, start/stop bundles
– Register services and obtain references

• Register listeners to be notified of
interesting events

Copyright 2005-2008 SpringSource. Copying, publishing or distributing without express written permission is prohibit

DEMO

Using plain OSGi bundles to share types and
services

16

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

17

OSGi & Spring

• OSGi provides nice runtime
– but lacks component model

• Spring provides component model
– but does not define the runtime

• Spring Dynamic Modules marries the two
– Use familiar Spring programming model in

OSGi!

18

Spring Dynamic Modules

• (or Spring-DM for short)
• Removes most OSGi-dependencies from

your code
– Best Practice: Proper Separation of Concerns

• Creates ApplicationContext per bundle
• Declarative service management
• And much more

19

Spring-DM Service
Management

• Exposes Spring beans as services
– Full control over interface, properties, etc.

• Creates proxies for service references
– No more manual management of service

dynamics!
– Saves lots of plumbing code in a typical

Spring fashion

20

Spring-DM Configuration

• Spring config files go in META-INF/spring
– Will be picked up automatically

• osgi: namespace for service export/ref

<bean id="myService" class="some.bundle.internal.MyServiceImpl">
 <property name="serviceDependency" ref="serviceDependency"/>
</bean>

<!-- Creates dynamic proxy for OSGi service with given interface -->
<osgi:reference id="serviceDependency"
 interface="other.bundle.ServiceDependency"/>

<!-- Exposes our Spring bean as OSGi service under its interfaces -->
<osgi:service ref="myService"
 interface="some.bundle.MyService"/>

<bean id="myService" class="some.bundle.internal.MyServiceImpl">
 <property name="serviceDependency" ref="serviceDependency"/>
</bean>

<!-- Creates dynamic proxy for OSGi service with given interface -->
<osgi:reference id="serviceDependency"
 interface="other.bundle.ServiceDependency"/>

<!-- Exposes our Spring bean as OSGi service under its interfaces -->
<osgi:service ref="myService"
 interface="some.bundle.MyService"/>

21

Spring-DM Configuration

• Best Practice:
Separate normal Spring config files from
Spring-DM config files
– Test or even reuse of modules without OSGi
– Esp. if ids of beans backing services are the

same as <osgi:reference> ids

<bean id="myService"
 class="samples.internal.MyServiceImpl"/>
<bean id="myService"
 class="samples.internal.MyServiceImpl"/>

Bundle A, file module-context.xml:

<osgi:service ref="myService"
 interface="samples.MyService"/>
<osgi:service ref="myService"
 interface="samples.MyService"/>

Bundle A, file osgi-context.xml:

<bean id="myClient" class="...">
 <constructor-arg ref="myService"/>
</bean>

<bean id="myClient" class="...">
 <constructor-arg ref="myService"/>
</bean>

Bundle B, file module-context.xml:

<osgi:reference id="myService"
 interface="samples.MyService"/>
<osgi:reference id="myService"
 interface="samples.MyService"/>

Bundle B, file osgi-context.xml:

Copyright 2005-2008 SpringSource. Copying, publishing or distributing without express written permission is prohibit

DEMO

Using Spring Dynamic Modules to share types
and services

23

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

24

Enterprise OSGi

• OSGi features are appealing to Enterprise
Java developers as well
– True modules instead of monolithic

deployments
– True dynamics that don't require constant

restarts

• Most applications servers already use
OSGi internally

25

Enterprise OSGi Issues

• Pure OSGi doesn't mix with Enterprise
Java very well
– Incompatible classloading models
– OSGi has hardly any web support
– Bunch of bundles is not a good deployment

model
– Enterprise Libraries not available as bundles

• New products and standards are
emerging to address this

26

Enterprise OSGi Products

• SpringSource dm Server
– Pioneered OSGi in an Enterprise Java setting

– Web Support, Thread Context Classloader mgmt, PAR
deployment format, Bundle provisioning, ...

• Paremus Service Fabric
– SCA Support

– Advanced clustering / cloud capabilities

• Various Open Source Projects
– Apache Aries
– OPS4J PAX has several relevant projects

27

Enterprise OSGi Standards

• Enterprise Expert Group produces new
specifications
– RFC 66: Web Support (RI: dm Server 2.0)
– RFC 112: Bundle Repository
– RFC 119: Distributed OSGi
– RFC 124: Blueprints (RI: Spring-DM 2.0)
– RFC 139: JMX interface for OSGi
– RFC 142: JNDI integration

• At the same time, much innovation is
happening

28

Enterprise OSGi

• Best Practice:
Enterprise OSGi is harder than you think,
don't build your own platform
– Getting e.g. JPA libraries to work reliably is

very challenging
– Think about runtime management as well

• Check your options and choose for
yourself based on your requirements
– Obviously we prefer dm Server

Copyright 2005-2008 SpringSource. Copying, publishing or distributing without express written permission is prohibit

DEMO

Developing a multi-bundle web application with
SpringSource dm Server

30

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

31

Best Practices

• So much for the tech talk, but how do
you apply this?

• Some best practices were given already
• Here follows some more high-level advice

on how to design your modules

32

How To Modularize

• How to split up your application in
bundles is not an easy question to
answer

• Question is really how to partition and
what granularity to use

33

Partitioning Into Bundles

Partitioning can be done in different ways:
• Vertical: functional partitioning

– For example orders, warehouse, billing and CRM

• Horizontal: technical partitioning
– Web, services, repositories, infrastructure

• A combination of the two

34

Vertical Partitioning

• Bundles represent functional modules
• Preferred approach for big enough

applications
– Single module assignable to a team of developers
– Encapsulates internals like repositories

• OrderRepository only needed in 'order' module

– Minimizes module's “surface area”
• Only needs to expose its business interfaces

• Might not work well for small applications
– Might not need partitioning in the first place

35

Horizontal Partitioning

• Bundles represent architectural layers
• Natural approach to many developers

– Tend to think of layers as modules already

• Allows for replacing layers easily
– For testing or during early development
– Deploy stubbed repository bundle without

changing services module

• Typically means more maintenance
– Use cases spread across multiple bundles
– So changes often span bundle boundaries

36

Web Modules

• Web Resources like JSPs cannot be split
across multiple bundles in dm Server 1.0
– Not for single ServletContext / HttpSession at least

• Must use single WAR / web module
– Even when using vertical partitioning!

• dm Server 2.0 will offer slices support
– Allowing for truly modular web applications

37

Infrastructure Bundles

• Most applications use shared infrastructure
across functional, vertical slices
– Same DataSource, transaction manager, JMS

ConnectionFactory, etc.

• Creating infrastructure bundle(s) makes
sense
– Even when using vertical partitioning: there's no

JNDI registry with globally defined resources!
– Simply expose resources as OSGi services
– By application developers or operations team

38

Bundle Granularity (1)

• How much stuff goes in one bundle
• Use same rules as for object orientation

– Bundles need to have a clear responsibility
– High cohesion within a bundle
– Loose coupling between bundles

• Works well with vertical partitioning
– Horizontal tends to increase dependencies

between bundles

39

Bundle Granularity (2)

• Easy to make modules too fine-grained
– Often seen in samples and labs

• To show how OSGi works

– Doesn't necessarily represent best practice!
– Better to extract extra bundle later if desired

• Typically shouldn't create bundle if non-
OSGi application wouldn't have dedicated
jar for the same code

40

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

Copyright 2005-2008 SpringSource. Copying, publishing or distributing without express written permission is prohibit

See “dm Server 2” Presentation

42

Topics in this session

• Introduction
• OSGi basics
• OSGi & Spring
• Enterprise OSGi
• Modularization Best Practices
• dm Server 2
• Summary

43

Summary

• OSGi brings true modularity and
dynamics to your applications

• Many potential benefits, but not always
easy to gain these

• Enterprise OSGi is an upcoming area of
great interest to many developers

• New products and standards new
emerging

	Spring Quick Start
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

