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Testing of Scout Application



The Tools approach…



� Unit testing

� White box testing

� Black box testing

� Integration testing

� Functional testing

� System testing

� End-to-end testing

The Testing Theory approach…



«What is your goal?»



Application under test



The application under test



Requirements (1)

Modification 

of the input 

fields…

… will update

the image and

summary fields

Specific format: <name> [<parts>] value: <value>



Requirements (2)

Only the available 

parts are listed in the 

field

Is only a part 

available, the field 

is disabled



Requirements (3)

Export button:

− validate the form

− register the minifig in 

the server

− reset the form



Scout architecture



A Scout application

Service 

Tunnel

Java / Eclipse

Webserver

Java / Eclipse

Client Application Server Application

ui
shared

client server

shared

Scout Client Scout Server



Scout Client Scout Server
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Unit testing



Scout Client

Test for logic in the shared plugin
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Scout Client

Test with the Scout services
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@RunWith annotation

Annotate the test class with the Annotation:

@RunWith(ScoutClientTestRunner.class)

public class DesktopFormTest {

//...

}

It adds:

� Equinox OSGi Runtime

� Scout Context, Services, …



Mock remote Services

� Create the mock

� Define the behavior for your tests:

private IDesktopProcessService m_mockService =

Mockito.mock(IDesktopProcessService.class);

Mockito

.when(m_mockService.load(

Mockito.any(DesktopFormData.class)))

.thenReturn(someFormData);



TestingUtility.registerServices(..)

� Dynamically register your mocked service:

@Before

public void setUp() {

m_registeredServices = TestingUtility.registerServices(

Activator.getDefault().getBundle(), 1000, m_mockService);

}

@After

public void tearDown() {

TestingUtility.unregisterServices(m_registeredServices);

}



Demo



Integration tests
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� Deploy the server:

− In a managed environment (database, external services…)

− As near as possible from the productive environment

� Start an head-less client:

− Browse through the data (outline, pages)

− Open some forms

� Depending on how-much effort you want to put in the client, 
it is possible to write one generic test for all pages and forms

Integration tests: Example setup



Automated user tests



Test procedures



Test procedures
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Test with Jubula
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� As a user would work – passing through all layers

� Test creation, execution, analysis

� Drag and drop test creation:

− No recording

− No programming

− Very similar to development code

� Constant feedback about quality

− Acceptance testing

− Regression testing 

Jubula



Workflow
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Using the specification to automate tests

Replace text

Select from smart field

Select from smart field

Select from smart field

Check text

m
o

d
u

le



Testing an application with Jubula

Write 
test

Start 
AUT

Perform
object

mapping
Run test Analyse



Assign ids to the scout fields

DSKTFORM_NAME_TXTFLD

DSKTFORM_LEGS_SMRFLD

DSKTFORM_EXPORT_BUTFLD

New

with Luna



Demo



Scout UI Tests
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AbstractTestWithGuiScript

public class DesktopFormUiTest extends

AbstractTestWithGuiScript {

@Override

protected void runModel() throws Throwable {

}

@Override

protected void runGui(IGuiMock gui) throws Throwable {

}

}

GUI Thread

Client Thread



� Abstraction for the UI layer

� Definition of UI interaction:

− gui.pressKey(Key)

− gui.typeText(FieldType, int)

− gui.gotoField(type, index)

− …

� Interface with implementations:

− For Swing 

− For Swt

IGuiMock



«How are you testing your
Scout application?»



Summary

� As with any other application, writing automated tests for your 
eclipse scout application is possible

� Everything is possible

− Unit tests

− UI tests

− Integration tests

− Performance tests

� There is a cost, so:
test only what makes sense for your application.



Thank You


