
Ludwigsburg, 27.10.2014

Testing of Scout Application



The Tools approach…



� Unit testing

� White box testing

� Black box testing

� Integration testing

� Functional testing

� System testing

� End-to-end testing

The Testing Theory approach…



«What is your goal?»



Application under test



The application under test



Requirements (1)

Modification 

of the input 

fields…

… will update

the image and

summary fields

Specific format: <name> [<parts>] value: <value>



Requirements (2)

Only the available 

parts are listed in the 

field

Is only a part 

available, the field 

is disabled



Requirements (3)

Export button:

− validate the form

− register the minifig in 

the server

− reset the form



Scout architecture



A Scout application

Service 

Tunnel

Java / Eclipse

Webserver

Java / Eclipse

Client Application Server Application

ui
shared

client server

shared

Scout Client Scout Server



Scout Client Scout Server

A Scout application

Service 

Tunnel

Java / Eclipse

Webserver

Java / Eclipse

Client Application Server Application

ui
shared

client server

shared



Scout Client

A Scout application

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui
shared

client server

shared



Unit testing



Scout Client

Test for logic in the shared plugin

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui

client server

sharedshared



Scout Client

Test with the Scout services

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui

client server

sharedshared



@RunWith annotation

Annotate the test class with the Annotation:

@RunWith(ScoutClientTestRunner.class)

public class DesktopFormTest {

//...

}

It adds:

� Equinox OSGi Runtime

� Scout Context, Services, …



Mock remote Services

� Create the mock

� Define the behavior for your tests:

private IDesktopProcessService m_mockService =

Mockito.mock(IDesktopProcessService.class);

Mockito

.when(m_mockService.load(

Mockito.any(DesktopFormData.class)))

.thenReturn(someFormData);



TestingUtility.registerServices(..)

� Dynamically register your mocked service:

@Before

public void setUp() {

m_registeredServices = TestingUtility.registerServices(

Activator.getDefault().getBundle(), 1000, m_mockService);

}

@After

public void tearDown() {

TestingUtility.unregisterServices(m_registeredServices);

}



Demo



Integration tests



Scout Client

Integration tests

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui

client server

sharedshared



� Deploy the server:

− In a managed environment (database, external services…)

− As near as possible from the productive environment

� Start an head-less client:

− Browse through the data (outline, pages)

− Open some forms

� Depending on how-much effort you want to put in the client, 
it is possible to write one generic test for all pages and forms

Integration tests: Example setup



Automated user tests



Test procedures



Test procedures



Scout Client

Test with Jubula

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui
shared

client server

shared

Black Box



� As a user would work – passing through all layers

� Test creation, execution, analysis

� Drag and drop test creation:

− No recording

− No programming

− Very similar to development code

� Constant feedback about quality

− Acceptance testing

− Regression testing 

Jubula



Workflow

Spec

acceptance

criteria
modules in Jubula

dev

test spec

executable 

specification

object

mapping
nightly build

and test

UC development

complete



Using the specification to automate tests

Replace text

Select from smart field

Select from smart field

Select from smart field

Check text

m
o

d
u

le



Testing an application with Jubula

Write 
test

Start 
AUT

Perform
object

mapping
Run test Analyse



Assign ids to the scout fields

DSKTFORM_NAME_TXTFLD

DSKTFORM_LEGS_SMRFLD

DSKTFORM_EXPORT_BUTFLD

New

with Luna



Demo



Scout UI Tests



Scout Client

Unit tests with UI

Service 

Tunnel

Java / Eclipse

Webserver

Scout Server

Java / Eclipse

Client Application Server Application

ui

client server

sharedshared



AbstractTestWithGuiScript

public class DesktopFormUiTest extends

AbstractTestWithGuiScript {

@Override

protected void runModel() throws Throwable {

}

@Override

protected void runGui(IGuiMock gui) throws Throwable {

}

}

GUI Thread

Client Thread



� Abstraction for the UI layer

� Definition of UI interaction:

− gui.pressKey(Key)

− gui.typeText(FieldType, int)

− gui.gotoField(type, index)

− …

� Interface with implementations:

− For Swing 

− For Swt

IGuiMock



«How are you testing your
Scout application?»



Summary

� As with any other application, writing automated tests for your 
eclipse scout application is possible

� Everything is possible

− Unit tests

− UI tests

− Integration tests

− Performance tests

� There is a cost, so:
test only what makes sense for your application.



Thank You


