
© 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Handling Conditional Compilation In CDT’s Core

Chris Recoskie
Team Lead
IBM CDT Team

2 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Problem Statement

The C Preprocessor (Cpp) allows
one to add conditional
compilation directives which
cause the code to potentially be
different depending on the state
of defined macros
CDT currently only parses and
indexes one compilation path
Searches and refactorings can
miss elements in the inactive
code
How to solve this?

#ifdef FOO
foo();

#else
bar();

#endif

3 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Problems With The Preprocessor

Conditional directives can appear at
any arbitrary point within a code
fragment, provided that the
conditional directives are the only
thing that appears on a given line of
source text
Branches can contain arbitrary sized
fragments of code that are not
syntactically correct in isolation

They do not have to appear on the
well formed boundaries of elements of
the language grammar

They can “break” constructs
In the example to the right, what is
the type of y? It depends.
Variables might be macros!

/* define a 32-bit int on
various platforms */
#ifdef HAS_32_BIT_INT
int

#endif
#ifdef HAS_16_BIT_INT
long

#endif
y;

#ifdef USE_MACRO_CONSTANTS
#define x 42

#else
int x = 42;

#endif
y = x;

4 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Problems With The Preprocessor

Parameterized macros can
concatenate text
In the right hand example, the
variables completeStatus and
errorStatus get set depending on
runtime conditions
What if such macros are defined
differently in different branches
conditional directives? The
referenced variables can be
completely different.

#ifdef USE_STATUS

#define ST(VAR) VAR##Status
#else
#define ST(VAR) VAR

#endif

#define ST(VAR)VAR##Status
int x;
switch(x) {
case 0:

ST(complete) = 1;
break;
case 1:

ST(err) = 1;
break;

}

5 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Problems With The Preprocessor

Conditional directives can have
binary expressions

#ifndef __ASSEMBLY__
#if __GNUC__ > 3

include <linux/compiler-
gcc+.h>

#elif __GNUC__ == 3
include <linux/compiler-
gcc3.h>

#elif __GNUC__ == 2
include <linux/compiler-
gcc2.h>

#else
error Sorry, your compiler is
too old/not recognized.

#endif
#endif

6 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Solution #1: Parse All Configurations

Could allow the user to enumerate all configurations that they care
about.
Parse the entire code with each configuration separately to build up
separate ASTs and indices, then apply operations to all of them
Pros:

Simple to implement
Cons:

Operations get slow and memory intensive the more configs you have

Combinatorics
• 5 binary macros means 32 possible configs

What if they care about all configurations?
• Non-binary macros means unbounded number of configs

7 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Solution #2 – Support Conditional Directives in C/C++
Grammar

Put rules in the grammar for matching conditional directives
Place nodes in the AST corresponding to the directives

Node has sub-trees for each branch of the conditional
Pros:

Represents all possible program configurations
Cons:

Directives can appear between any arbitrary tokens
• Makes the grammar exceedingly complex

How to handle directives that break syntactic constructs?
• Would need nodes with smaller granularity than current AST

o More like a parse tree
• Don’t really want visitors having to do their own parsing

8 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Solution #3: Garrido-Style Pseudo-Preprocessing and
Conditional AST

AST contains all alternatives that appear as a result of
conditional directives
Nodes are marked with conditions which indicate under what
circumstances the node applies

Nodes are not children of nodes for directives
Pros:

Complete (but compact) representation of the code

Can always safely cache headers
Cons:

Requires a lot of rework of CDT parsers and APIs

9 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Step #1: Partially Preprocess

Tokenize the Cpp directives along
with the regular code
Generate include dependency
graph (with conditional edges)
Macro calls are tokenized with a
special macro call token, which is
later resolved by indexing into a
macro table
Macro defined within conditional
compilation directives have their
macro table entries marked with
their guarding conditions
Text that is not a part of a Cpp
directive is just parsed as a block of
text

10 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Step #2: Parse and Complete Conditional Directives

Another parser that works on the
output from Step #1
Run Garrido’s Conditional
Completion Algorithm on directives

“Completes” all alternatives of a
conditional so they are syntactically
valid C/C++ constructs.

Requires detection of certain
keywords and punctuation

For C:
•Composite statements
•For loops
•Enums
•Semi-colons

For now all other text is parsed as just
blocks of text

11 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Step #3: Preprocess/Re-tokenize for C/C++

Conditionals are tokenized as
a single terminal, with a
condition
When a conditional is
encountered, assume it is
true and push its condition
onto the current condition
stack
On the contained code:

Run the preprocessor to
expand macros assuming that
the conditions in the condition
stack are true

Mark tokens with conditions
from condition stack

•Nested conditions are
conjoined
•Compatible conditions
are merged.

#ifdef __STDC__
const char * msg;

#else
char * msg;

#endif

#ifdef __STDC__
const char * msg;

#else
char * msg;

#endif

CONDITIONAL
defined(__STDC__)

CONDITIONAL
defined(__STDC__) CONST

defined(__STDC__)

CONST
defined(__STDC__) CHAR

defined(__STDC__)

CHAR
defined(__STDC__)

ASTERISK
defined(__STDC__)

ASTERISK
defined(__STDC__) ID:msg

defined(__STDC__)

ID:msg
defined(__STDC__) CONDITONAL

!defined(__STDC__)

CONDITONAL
!defined(__STDC__)

CHAR
!defined(__STDC__)

CHAR
!defined(__STDC__) ASTERISK

!defined(__STDC__)

ASTERISK
!defined(__STDC__) ID:msg

!defined(__STDC__)

ID:msg
!defined(__STDC__)

12 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Step #4: Parse For C/C++

C/C++ parser
grammar includes
terminals for
conditional directives

Parse and build an
AST.

AST nodes and
bindings have
conditions on them
based on the
conditionals that
guard them

13 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Step #4: Index Build an index from the AST.

Bindings inherit conditions from the
AST. Note that now there can be
more than one binding
corresponding to a name at a
location.

Queries on the index return all
bindings regardless of whether their
conditions are true in the current
build configuration

Can add convenience methods to
index to filter on given
configurations or conditions

Binding
Name: A
Type: int

Condition: defined(FOO)

Binding
Name: A
Type: int

Condition: defined(FOO)

…
A = 1;
…

…
If(A == 2)
…

referenced by

referenced by

…
int A;
…

declaration

Binding
Name: A
Type: int

Condition: defined(FOO)

Binding
Name: A
Type: int

Condition: defined(FOO)

referenced by …
int A;
…

declaration

14 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

UI Behaviour In Presence of Conditionals
Search matches, etc. show hits in all
compilation paths

Hits shown with their conditional next to
them

Could specify “condition working sets” to
restrict scope (tie in to build configurations
too)

Could have an option to only report
matches from the active configuration

Could maybe parse “the old way” in this
case to make things faster.

(global) foobar() when: FOO > 3 && defined(BAR)

15 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

Effort Required
Quick and dirty effort estimates and
work breakdown structure have been
created.
Over 8 person-months of effort
required.

Not enough resources at IBM to do this
for Ganymede, but this is a priority for
IBM for the future, so we can commit to
working on this post-Ganymede.

16 © 2007 IBM Corporation and others; made available under the Eclipse Public License v1.0

References

Garrido, Alejandra, Ph.D. Program Refactoring In The Presence
of Preprocessor Directives

	Handling Conditional Compilation In CDT’s Core
	Problem Statement
	Problems With The Preprocessor
	Problems With The Preprocessor
	Problems With The Preprocessor
	Solution #1: Parse All Configurations
	Solution #2 – Support Conditional Directives in C/C++ Grammar
	Solution #3: Garrido-Style Pseudo-Preprocessing and Conditional AST
	Step #1: Partially Preprocess�
	Step #2: Parse and Complete Conditional Directives
	Step #3: Preprocess/Re-tokenize for C/C++
	Step #4: Parse For C/C++
	Step #4: Index
	UI Behaviour In Presence of Conditionals
	Effort Required
	References

