
ECF Autobuild System

Part 1

Summary

This report describes an automated build system implemented for the Eclipse ECF project. The
system uses cruisecontrol and ant; it runs on an OSU machine. It checks out code from the
Eclipse repository, performs a headless build, and uploads the files to the ECF downloads
directory on dev.eclipse.org.. In addition, extra builds are performed from a repository
located on another OSU machine and made available from a web site hosted by that machine.
The report also describes how the automated build system can be remotely administered and
suggests future work.

Contents
Summary .. 1

The Goal ... 3

Defining the Goal ... 3

The Zeroth Stage .. 3

The First Stage ... 4

Download and install CruiseControl. .. 5

Download and Install Ant .. 5

Testing that Ant Works .. 6

Testing that Cruisecontrol Works .. 6

Getting the Build under Cruisecontrol ... 6

Starting Up CruiseControl ... 7

The ECF Builds .. 7

Build Intervals and Quiet Periods .. 7

The ECF Daily Build ... 9

cc-build.xml ... 9

Sending Email .. 10

Uploading Files .. 14

Passphraseless Key Authentication .. 14

Making and Using the Key-Pair on Linux ... 14

09/11/08 Page 1 of 35 Ted Kubaska

ECF Autobuild System

Using the Key-Pair on Windows ... 15

Uploading Daily Files .. 18

Making Files Available on eclipse.org. ... 19

Keeping a Week’s Worth of Dailies ... 21

More Detail on the Daily Builds .. 21

Second Stage .. 22

Setting Up the Cruisecontrol Web Reporting Tool .. 22

Using the Web Reporting Tool Remotely ... 22

Getting a Remote Desktop ... 22

Getting a Remote Browser ... 30

Third Stage ... 31

Fourth Stage ... 35

09/11/08 Page 2 of 35 Ted Kubaska

ECF Autobuild System

The Goal

Our goal is to have an automated build system for the Eclipse ECF project.

Defining the Goal

What do we mean by an automated build system? I’m not going to try to describe our entire
vision and then show it in operation. It has too much plumage for that.

Rather I’ll describe our automated build system in stages. This reflects reality more closely
because that’s how we implemented it. In fact, some of the later stages have not been
implemented.

The Zeroth Stage

In this stage we just wanted to understand the key terms.

PDE Builds. Just some background information about PDE builds. We’re building ECF, which
is an Eclipse pug-in. This is a called a PDE build.

The most straightforward way is to build the plug-in from within the Eclipse IDE. But we want
to be able to build from the command line. We don’t want the Eclipse IDE to pop up. Once we
can build from the command line, we can put the build in a script and then automate the script.

Headless Builds. Building from the command line is called a headless build. There is an
important caveat. A headless build requires the file startup.jar which is no longer part of the
Eclipse SDK distribution. So we grabbed an older one and put it in our own section of the
repository.

We are using the startup.jar from Eclipse 3.3.0.

Server vs. Workstation Builds. Notice that our repository makes a distinction between server
and workstation builds. This is a distinction that has ceased to be important; we use the server
build exclusively now.

The workstation build was one that we could start and run from the command line. You would
provide arguments on the command line; but it turns out that you can do the very same thing
with the workstation build.

Here’s a figure that shows how our repository is structured. The repository is
/cvsroot/technology/org.eclipse.ecf.

09/11/08 Page 3 of 35 Ted Kubaska

ECF Autobuild System

The First Stage

Here are the characteristics of our first stage.

• We do our builds on a machine in the opensource lab at OSU in Corvallis, Oregon called
ecf2. It runs Suse 10.2 Linux.

• Our source code is in the Eclipse repository.

• We run cruisecontrol on ecf2. This cruisecontrol checks for changes in the repository
every 30 minutes. If there is a change it performs a build. We call this the auto build. It
sends out email to the list ecf-build. We do not save the auto builds.

• Cruisecontrol also performs a daily build if it detects a change in the repository. We
upload the daily build to dev.eclipse.org, and it is available from our ECF web page.
(Later we decided to perform a daily build whether or not there was a change in the
repository.)

We chose cruisecontrol for no special reason. It's the warhorse of automated builds, but it is
showing its age. We are certainly open to trying out other newer systems. We are dependent on
cruisecontrol at this time, and so if we try out other methods, we'd have to do it as a prototype
and make the switch after we determine it is working the way we want.

Here is how we implemented the first stage.

09/11/08 Page 4 of 35 Ted Kubaska

ECF Autobuild System

Download and install CruiseControl.
2.7 was the latest release when we started. There is now a 2.7.1, but we have not upgraded. Our
first installation used 2.6.2.

Go to http://cruisecontrol.sourceforge.net/download.html and download the file
cruisecontrol-src-2.7.zip. Unzip it to /opt. Then, go into the directory
/opt/cruisecontrol-2.t/main and run the script build.sh.

You get a lot of screen output that lasts for a couple of minutes. A dist directory is created
under main. To run cruisecontrol, run the script cruisecontrol.sh under main/bin.

Download and Install Ant
The ant that came with Suse 10.2 (downloaded with YaST) did not work for me. Most of it did,
but the scp authentication part did not. However, the ant I downloaded from the ant site did
work. It was a newer version too.

Go to http://ant.apache.org. Click on Download->Binary Distributions.. Then, untar the file
into /opt, and put /opt/apache-ant-1.7/bin in the path.

You can test by creating an antfile and running it. I liked to test ant by trying out a sample
project from the book Pragmatic Project Automation by Mike Clark. I’m going to skip the
details of that test here, but it’s worth saying something. So here goes.

09/11/08 Page 5 of 35 Ted Kubaska

http://ant.apache.org/
http://cruisecontrol.sourceforge.net/download.html

ECF Autobuild System

Testing that Ant Works
You make an antfile; I called it cc-build.xml like Mike Clark. You start it up as

ant –buildfile cc-build.xml

Note that -f and -file perform the same operation as -buildfile. The file cc-build.xml can
be very simple. Note that the example below has one project that runs the target called build. It
deletes a directory called dms (this stands for Document Management System and comes from
Mike Clark’s book). This checks out (from CVS) the project dms. It uses the repository defined
in the CVSROOT environment variable.

<project name="cc-build" default="build" basedir="/home/ted/builds/checkout">
 <target name="build">
 <delete dir="dms" />
 <cvs command="co dms" />
 <ant antfile="build.xml" dir="dms" target="test" />
 </target>
</project>

The file cc-build.xml calls the target test in another antfile called build.xml. I’m not going
to reproduce the details of build.xml here, but the target test depends on the target compile-
tests, which depends on the target compile. And the target compile calls the ant task
<javac/> which does the compilation.

Testing that Cruisecontrol Works
That last build was run under ant, not cruisecontrol. Let’s just see what’s necessary to get it
under cruisecontrol.

Getting the Build under Cruisecontrol
You need a file called config.xml. Well, that’s the default name, and we might as well use it.
Here’s a minimal config.xml.

<cruisecontrol>
 <project name="dms" buildafterfailed="false">

 <listeners>
 <currentbuildstatuslistener
 file="logs/dms/DMScurrentbuildstatus.txt" />
 </listeners>

 <modificationset quietperiod="30">
 <cvs localworkingcopy="checkout/dms" />
 </modificationset>

 <schedule interval="300">
 <ant buildfile="cc-build.xml" target="build" />
 </schedule>

 </project>
</cruisecontrol>

09/11/08 Page 6 of 35 Ted Kubaska

ECF Autobuild System

Note the <listeners/> element. This replaces the obsolete

<bootstrapper>
 <currentbuildstatusbootstrapper/>
</bootstrapper>

and

<publisher>
 <currentbuildstatuspublisher/>
</ publisher >.

Starting Up CruiseControl
Start up cruisecontrol by just running the cruisecontrol.sh script. Give it options to identify
the config file, specify the port for the JMX console, and specify the port for remote method
invocation (rmi). The values below are the default values, but I like to list them anyway. More on
these ports later.

/opt/cruisecontrol-2.7/main/bin/cruisecontrol.sh -configfile config.xml -port
8000 -rmiport 1099'

The ECF Builds
We do an auto build and a daily build. Each is a separate cruisecontrol project.

<!-- PROJECT ECF This is the Auto build -->
 <project name="ecf" buildafterfailed="false">
 .
 .
 </project>
<!-- PROJECT ECFDAILY This is the Daily build -->
 <project name="ecfDaily" buildafterfailed="false">
 .
 .
 </project>

Each of these builds consists of three zip files More about what these zip files are and how to
make them later. Right now, think about how to configure the scheduling.

Build Intervals and Quiet Periods
We want to set cruisecontrol to consider an auto build every 30 minutes. Note the sample
config.xml listed above and the elements <modificationset/> and <schedule/>.

The <modificationset/> is just what you think it is. It’s the location of the checked-out files
that you want to build. Cruisecontrol monitors these files to see if they change in the CVS
repository. The <schedule/> element specifies how often cruisecontrol considers doing a build.
The units are seconds … 30 minutes are 1800 seconds, so for auto builds, set the interval to
1800.

 <modificationset quietperiod="300">
 <cvs localworkingcopy="${localcopy}" />
 </modificationset>

 <schedule interval="1800">

09/11/08 Page 7 of 35 Ted Kubaska

ECF Autobuild System

 <ant buildfile="cc-build.xml" target="ecf.build" >
 <property name="mapVTag" value="HEAD" />
 <property name="feature" value="ecf.core" />
 <property name="buildIdentifier" value="false" />
 <property name="buildType" value="A" />
 <property name="genFVSuffix" value="true" />
 </ant>
 </schedule>

What about the quietperiod? The CVS repository must be quiet for the quietperiod before a build
is attempted. If it is not, then the next scheduled build is skipped. The next two figures illustrate
what I mean.

Consider a series of builds … Build 1, Build 2, Build 3, Build 4, each separated by the build
interval. In the first figure, the quiet period starts after a CVS change is detected and before the
build interval between Build 1 and Build 2 ends. Hence, Build 2 occurs.

In the next figure, the build interval between Build 1 and Build 2 ends before the quiet period
terminates. Hence, Build 2 does not occur.

09/11/08 Page 8 of 35 Ted Kubaska

ECF Autobuild System

The ECF Daily Build
The last section showed a snippet from config.xml for the ECF auto build. Here are the
equivalent lines for the Daily Build.

 <modificationset quietperiod="300">
 <filesystem folder="/opt/ECFBuilds/daily_kick" />
 <cvs localworkingcopy="${localcopy}" />
 </modificationset>

 <schedule>
 <ant buildfile="cc-build.xml"
 time="1500"
 target="ecf.copy" >
 <property name="mapVTag" value="HEAD" />
 <property name="feature" value="ecf.core" />
 <property name="buildIdentifier" value="DAILY" />
 <property name="buildType" value="D" />
 <property name="genFVSuffix" value="false" />
 </ant>
 </schedule>

Notice that there isn’t an interval attribute for the <ant/> element. Rather there is a time
attribute. It specifies the time based on a 24-hour clock; 1500 is 3PM.

Note the properties. These pass values to the antfile cc-build.xml. If you wanted to run the
build from the command line (not through cruisecontrol), use the –D option on the ant command
line to pass these values.

ant –DmapVTag=HEAD –Dfeature=ecf.core –DbuildIdentifier=DAILY –DbuildType=D
 -DgenFVSuffix=false –buildfile=cc-build.xml ecf.copy

Why is the target ecf.copy and not ecf.core? I'll explain that later. Let’s look at
cc-build.xml first.

cc-build.xml
The file cc-build.xml executes the <java/> task that performs the headless build. You know,
you don’t have to perform the headless build through ant. You could invoke java right from the
command line and supply the appropriate options.

Here are the key lines in cc-build.xml.

<java classname="org.eclipse.core.launcher.Main"
 classpath="${eclipse.home}/startup.jar"
 fork="true" resultproperty="buildResult">
 <arg line ="-application org.eclipse.ant.core.antRunner
 -buildfile build.ecf.xml -logfile logs/${logfile}"/>
 <sysproperty key='feature' value='${feature}'/>
 <sysproperty key='mapVersionTag' value='${mapVersionTag}'/>
 <sysproperty key='buildType' value='${buildType}'/>
 <sysproperty key='buildId' value='${buildId}'/>
 <sysproperty key='buildLabel' value='${buildType}-${timestamp}'/>
 <!-- Zip build folder -->
 <sysproperty key='baseLocation' value='${eclipse.home}'/>

09/11/08 Page 9 of 35 Ted Kubaska

ECF Autobuild System

 <sysproperty key='timestamp' value='${timestamp}'/>
 <sysproperty key='generateFeatureVersionSuffix' value='${genFVSuffix}'/>
 <sysproperty key='forceContextQualifier'
 value='${forceContextQualifier}'/>
</java>

What’s happening here? Well, you’re running the eclipse launcher from the command line. You
are launching the application antRunner (this is the ant that’s part of Eclipse) and specifying the
antfile build.ecf.xml.

Remember, when you did a headless build, you invoked java from the command line or more
likely put this java invocation in a script. What we’re doing is instead of that script we use the
antfile cc-build.xml and then arrange that cruisecontrol call this antfile. So the flow of control
looks like the following.

cruisecontrol
config.xml
cc-build.xml
java, eclipse, antrunner, build.ecf.xml
build.xml

Sending Email
Cruisecontrol takes care of sending email in case of success or failure. This is controlled through
config.xml.

But first we set up a mailing list called ecf-build. To subscribe to this mailing list, go to https://
dev.eclipse.org/mailman/listinfo/ecf-build. Click on ECF Build Archives to see an archive of
mail messages.

Here is a sample mail message. If you click on the link in the message, right now you just get a
link to the ECF downloads page (where the Daily Builds are available). Our intent is to provide

09/11/08 Page 10 of 35 Ted Kubaska

https://dev.eclipse.org/mailman/listinfo/ecf-build
https://dev.eclipse.org/mailman/listinfo/ecf-build

ECF Autobuild System

more build statistics on this page in the future.

A typical mail message looks like the following:

09/11/08 Page 11 of 35 Ted Kubaska

ECF Autobuild System

If you click on the link next to “View results here,” you get the following:

To set up cruisecontrol to send mail to our mailing list, add the following to config.xml.

 <!-- PROJECT ECF This is the Auto build -->
 <project name="ecf" buildafterfailed="false">

09/11/08 Page 12 of 35 Ted Kubaska

ECF Autobuild System

 <listeners>
 .
 .
 </listeners>
 <modificationset …>
 .
 .
 </modificationset>
 <schedule …>
 .
 .
 </schedule>
 <publishers>
 <htmlemail mailhost="${smtpserver}"
 returnaddress="${mailsender}"
 skipusers="true"
 buildresultsurl="${resultswebpage}"
 css="/opt/cruisecontrol-2.7/docs/cruisecontrol.css"
 xsldir="/opt/cruisecontrol-2.7/reporting/jsp/webcontent/xsl">
 <map alias="ecf-build" address="ecf-build@eclipse.org"/>
 <always address="ecf-build" />
 </htmlemail>
 </publishers>
 </project>

A couple of comments about ${smtpserver} and ${mailsender} are in order. On ecf2, we
define ${smptserver} to be smtp.osuosl.org, which is in fact OSU’s smtp server.

On ecf2, what we put in for ${mailsender} is irrelevant; it doesn’t even have to be a real mail
address. However, when I run cruisecontrol on my own workstation and talk to my own ISP
(comcast), I must provide my comcast email address for comcast to accept my mail for transfer.
Both ${smtpserver} and ${mailsender} are defined as properties up at the top of config.xml.

 <property name="smtpserver" value="smtp.osuosl.org" />
 <property name="mailsender" value="tedkubaska@comcast.net" />

The css and xsl files are defaults that come with cruisecontrol. Change them if you like.

skipusers is an important attribute. Cruisecontrol has an interesting feature in that it tries to
send email to the user that made the cvs change. It constructs the address as

<the cvs user’s name>@<the value of defaultsuffix>

defaultsuffix is an attribute of <htmlemail /> that I haven’t shown and don’t use. What
skipusers does is cause cruisecontrol to ignore this feature. With skipusers set to true, mail is
sent only to ecf-build and not to any of the cvs users.

Note that the mail is listed as <always />. This means that both success and failure messages
are sent. Sometimes you want only failure messages, and you can arrange that as follows.

<failure address="ecf-build" reportWhenFixed=”true”/>

When you do that, an email is sent only on a failure and then again when that failure is fixed.

09/11/08 Page 13 of 35 Ted Kubaska

ECF Autobuild System

Uploading Files
We want to make our Daily Builds available for download from
http://www.eclipse.org/ecf/downloads.php . We can make it available by uploading the files to a
directory on dev.eclipse.org, namely downloads/technology/ecf. Downloads is a link
under my home on dev.eclipse.org. Put a file there and in a few minutes, it starts appearing
on the mirrors.

Passphraseless Key Authentication
When we first considered uploading files to dev.eclipse.org, we looked at the <ftp /> task.
However, for security reasons we preferred to use scp with passphraseless key authentication.
We wanted passphraseless because we did not want to embed a password in our scripts.

Making and Using the Key-Pair on Linux
Here’s how I made both an rsa and a dsa key. In your home, create and enter the directory .ssh.
Issue the command

ssh-keygen –t rsa or ssh-keygen –t dsa

and then enter a return for a password.

In the screenshots that follow I used my own Linux desktop called halibut. They keys I made
are not unique to halibut. The keys are ASCII files, and you can look in the public key file and
see ted@halibut in it, but that’s OK. It still works with tkubaska@dev.eclipse.org.

You get two keys: a private key (id_dsa) and a public key (id_dsa.pub).

Keep the private key in your .ssh on your source machine, in this case ecf2. Make the private
key –rw------ by you; you here is the user that cruisecontrol runs as.

Put the private key in a file called authorized_keys in .ssh in your home on the destination
machine. Make the file authorized_keys –rw------ by you.

09/11/08 Page 14 of 35 Ted Kubaska

http://www.eclipse.org/ecf/downloads.php

ECF Autobuild System

With passphraseless key authentication, you can then log onto the destination machine without
using a password as follows.

You can also use scp to transfer files from ecf2 to dev.eclipse.org without having to supply a
password.

Using the Key-Pair on Windows
If you are using Windows with PuTTY, you have to load this key (which on Linux was made as
an OpenSSH key) and convert it into PuTTY format. Run puttygen.exe and click on Load.

Load the private key id_dsa.

09/11/08 Page 15 of 35 Ted Kubaska

ECF Autobuild System

Click OK. Then, click Save Private Key.

09/11/08 Page 16 of 35 Ted Kubaska

ECF Autobuild System

Click Yes

Save the file ensuring that you save it with a ppk extension. Then, when you use PuTTY to
connect, you must first run pageant.exe. When you execute pageant, it appears in your toolbar.
Click on it icon and Add the private key you made. You must add this private key every time you
bring up Windows, but it will stay active during your Windows session.

Uploading Daily Files
When we first started making Daily Builds, we didn’t save more than the latest one. So every
Daily Build that we uploaded just overwrote the previous one. What we did was add an
<onsuccess /> task underneath <publishers />, and in that <onsuccess /> task call the
antfile antscp.xml.

 <!-- PROJECT ECF This is the Daily build -->

09/11/08 Page 17 of 35 Ted Kubaska

ECF Autobuild System

 <project name="ecfDaily" buildafterfailed="false">
 <listeners>
 .
 .
 </listeners>
 <modificationset …>
 .
 .
 </modificationset>
 <schedule …>
 .
 .
 </schedule>
 <publishers>
 <htmlemail …>
 .
 .
 </htmlemail>

 <onsuccess>
 <antpublisher
 antscript="/opt/apache-ant-1.7.0/bin/ant"
 antWorkingDir="/opt/build.ecf"
 buildfile="antscp.xml"
 target="deploy" />
 </onsuccess>
 </publishers>
 </project>

The file antscp.xml looks as follows. We define source and destination directories. The source
directory is on ecf2; the destination directory is on dev.eclipse.org. We also specify the
location of the private key.

<project name="upload files" default="deploy">

<property name="deploysrc" location="/opt/build.ecf/ecf.output" />
<property name="deploydest"
 value="tkubaska@dev.eclipse.org:/home/data/users/tkubaska/downloads/technolo
gy/ecf/dailies" />
<property name="keyloc" location="/home/ted/.ssh/id_dsa" />

<target name="deploy">
 <scp todir="${deploydest}"
 keyfile="${keyloc}"
 passphrase="">
 <fileset dir="${deploysrc}">
 <include name="**/*.zip"/>
 </fileset>
 </scp>
</target>

Making Files Available on eclipse.org.
These files are available from http://www.eclipse.org/ecf/downloads.php . I edited

09/11/08 Page 18 of 35 Ted Kubaska

http://www.eclipse.org/ecf/downloads.php

ECF Autobuild System

download.php to have an ECF Dailies link.

Click on ECF Dailies and see the following.

09/11/08 Page 19 of 35 Ted Kubaska

ECF Autobuild System

Note that on dailies.php, I show several daily builds. When we first started, we had just three
Daily zips. So the three zips we had were the sdk, examples, and core zips. The filenames did
not include the date and time (those numbers just before the DAILY). And the filenames now
have the version number, which is not shown in the old figure above. A typical zip name is
org.eclipse.ecf.sdk-2.0.0.v20080620-1600-DAILY.zip.

Keeping a Week’s Worth of Dailies
Here’s a problem. Our ECF web page needs to show the names of the daily builds and these
names depend on what is currently being offered for download and what is being offered
changes depending on whether a Daily Build is performed or not. It depends on what is in the
downloads directory on dev.eclipse.org.

So when a user accesses the downloads page and clicks on ECF Dailies, we don’t want our PHP
to have to go and do an ls on dev.eclipse.org. This might result in an inordinate number of
hits on dev.eclipse.org and, well, that’s just inappropriate.

So what to do? The solution we have is not lilely the best one, but in the interest of true
collaboration, I’m going to describe what I did, knowing full well that it’s a kludge.

More Detail on the Daily Builds
To modify how our web site presents daily builds for download, you have to first look at how the
resulting zip files are moved around.

Remember in config.xml the target for the daily build was ecf.copy. If you look in cc-
build.xml at the target ecf.copy, you see that it depends on ecf.build. So ecf.build gets
done first and then ecf.copy happens.

The first thing ecf.copy does is copy the output to a directory called ecf.output on ecf2. It
copies the updatesite as well as the zips. Then, it puts the daily builds in ecf.dailies. Then it
does an ls -1 on ecf.dailies and puts the output in filelist.txt. Note that this is an ls -1
(one not el). The file filelist.txt is in the workspace area that eclipse uses for its checkouts.
Then, cc-build.xml calls the antfile antfilelist.xml.

The antfile antifilelist.xml checks filelist.txt into www/ecf under the repository
dev.eclipse.org:/cvsroot/org.eclipse, which is where our web site is stored.

Then, remember that the link ECF Dailies actually brings up dailies.php, which has in it the
following lines.

<?php
 $files=file("filelist.txt");
 rsort($files);
 foreach ($files as $file) {
 echo '<tr> <td><p>
 <a href="http://www.eclipse.org/downloads/download.php? ' .
 'file=/technology/ecf/dailies/' . $file .'">' . $file .
 '</p></td></tr>';
 }
?>

09/11/08 Page 20 of 35 Ted Kubaska

ECF Autobuild System

Now as time marches on, the list of available daily downloads gets larger and larger. There’s lots
of room on dev.eclipse.org, but it’s not good practice to let something be so open-ended. The
Eclipse Fundation does not allow its users to set up cron jobs (rightly so, it’s a security leak).
But you can request that Eclipse System Administration set one up for you, and if you got a good
reason, they do it. We have a cron that looks as follows. It gets run once a week.

find /home/data/users/tkubaska/downloads/technology/ecf/dailies -mtime +7
 -name '*.zip' -type f -exec rm -rf {} \;

Second Stage

We want to be able to force builds remotely. And we want to do that from the cruisecontrol web
reporting tool. The cruisecontrol site makes a distinction between the web reporting tool and the
cruisecontrol GUI. The web reporting tool is a war file that runs in tomcat’s webapps folder (or
under your favourite servlet engine), and the cruisecontrol GUI is a jnlp file.

Setting Up the Cruisecontrol Web Reporting Tool
How do you make the war file?

As root, go into the directory /opt/cruisecontrol-2.7/reporting/jsp. Issue the command

sh build.sh war

You get lots of output on the screen. You get asked for a logs directory; I chose
/opt/build.ecf/logs/. Now I don’t know if this is absolutely reproducible, but I think I
needed that trailing slash (/). You also get asked for a status file; I chose
ECFcurrentbuildstatus.txt. You get asked for an artifacts directory; I chose
/opt/build.ecf/logs/. I’m not really using artifacts (an artifact is something like a junit
report).

The result is a file called cruisecontrol.war in the directory
/opt/cruisescontrol-2.7/reporting/jsp/dist. As root, copy this file to tomcat’s
webapps folder which on ecf2 is /srv/www/tomcat5/base/webapps.

Then, as root, start up tomcat.

/usr/share/tomcat5/bin/startup.sh

Using the Web Reporting Tool Remotely
From Portland, we want to be able to log onto ecf2 in Corvallis and force either an auto or a
daily build. We do this with ssh passphraseless key authentication and ssh port forwarding.

We do our remote administration from the command line, from a port-forwarded browser, and
from a port-forwarded desktop. From the command line, we can edit the confiuration files,
start/stop cruisecontrol, and look at log files. We use the port-forwarded browser to force builds.
We use the port-forwarded browser to configure Eclipse and sometimes force builds.

Getting a Remote Desktop
I'll show this from Windows, but it works also from Linux.

09/11/08 Page 21 of 35 Ted Kubaska

ECF Autobuild System

From Windows, I use PuTTY. Set ecf2.osuosl.org as the host name and port 22. Click on
Load, then Open.

Get a login screen. Login and start the vncserver. If this is the first time you are running
vncserver, you get to set a password. Remember it.

Now as a sidenote, realize that the window you get by default is going to be twm. If you like twm,
that’s fine. I prefer gnome. You can choose your window manager by putting the appropriate
xstartup file in .vnc in your home. Note the passwd file. It stores your vnc password as a data
file.

Assuming you got the files in .vnc that you want, here’s how the start for vncserver looks.

09/11/08 Page 22 of 35 Ted Kubaska

ECF Autobuild System

Then, open up another instance of PuTTY. Load ecf2. Then, choose SSH/Tunnels. Type in 5904
for the Source port. The 4 in 5904 comes from the 4 in the login window shown above. Also type
in localhost:5904 for Destination.

Click on Add.

09/11/08 Page 23 of 35 Ted Kubaska

ECF Autobuild System

Then, click on Open and login. On your Windows box, open up RealVNC (you’ve already
installed this, right?)

Click on OK.

Type in your password. This is not your user password on ecf2 but rather the password you
chose when you set up vncserver for the first time. Then you see the VNC window into ecf2.

09/11/08 Page 24 of 35 Ted Kubaska

ECF Autobuild System

Open up Firefox in the ecf2 window. Navigate to http://localhost:8080/cruisecontrol. The
cruisecontrol GUI comes up. Notice that there are actually four projects listed. (Currently, we
have nine projects.) osu and ecf are the Auto Builds for the osu and ecf projects (we haven’t
talked about osu builds yet). osuDaily and ecfDaily are the Daily Builds.

OK, let’s start a build. First, if you want to monitor the build, open up an xterm. You’re not
going to get the gnome terminal launcher by default. I set one up previously. In the xterm, cd to

09/11/08 Page 25 of 35 Ted Kubaska

http://localhost:8080/cruisecontrol

ECF Autobuild System

/opt/build.ecf and issue a tail –f nohup.out.

Cruisecontrol runs all the time. It does sometimes die or hang, but it’s pretty reliable. But I
started it with nohup so that I could log out of ecf2. I started it as follows.

nohup /opt/cruisecontrol-2.7/main/bin/cruisecontrol.sh -configfile config.xml
 -port 8000 -rmiport 1099'

You can see its output by looking at nohup.out.

Click on the Build button for ecfDaily. Then, click on OK.

09/11/08 Page 26 of 35 Ted Kubaska

ECF Autobuild System

Here’s the build output.

Notice from the build output that the build is successful (buildResult=0 … first red arrow), that
the checkin of filelist.txt occurs (the second red arrow), and that the scp transfer occurs (the
third red arrow).

09/11/08 Page 27 of 35 Ted Kubaska

ECF Autobuild System

Click on Log Out. Then, in one of the PuTTY windows, find the pid of the vnc process and kill
it.

09/11/08 Page 28 of 35 Ted Kubaska

ECF Autobuild System

Logout of any remaining PuTTY windows.

Getting a Remote Browser
We want to force builds without having to get a remote desktop. This involves forwarding ports
8000 and 8080. But just forwarding the ports is not enough.

At first that's what I did, and the JMX console on port 8000 is functional; the cruisecontrol GUI
(that tomcat war file) was not. The cruisecontrol GUI came up, but the Build buttons didn't do
anything.

You can force builds through the JMX console, but it's clunky. The JMX console is very
functional, and what we want to do is very simple. It's easier to use the cruisecontrol GUI.

Here's what I had to do.

Ecf2 runs SuSE Linux, which wants to do a bunch of stuff by default that gets in the way.
Before making the cruisecontrol.war file, I took out the default SuSE stuff by adding the
following lines to .bashrc for both root and ted.
unset JDK_HOME
unset JAVA_BINDIR
unset JAVA_HOME
unset JRE_HOME
unset SDK_HOME
unset JAVA_ROOT

Then defined the JAVA_HOME I wanted.
JAVA_HOME=/opt/jdk1.6.0_04
export JAVA_HOME

In root's .bashrc I defined
CATALINA_HOME=/opt/apache-tomcat-6.0.13
export CATALINA_HOME

Then, I edited the web.xml in /opt/apache-tomcat-6.0.13/webapps/cruisecontrol/WEB-
INF. For some reason I do not understand, the IP address did not work. But I used localhost
and that worked.
<context-param>
 <param-name>cruisecontrol.jmxhost</param-name>
 <param-value>localhost</param-value>
 <description>If your server doesn't know it's own proper IP address or it's name isn't
resolvable by other machines on the network, set the IP address or resolvable name here. This
will enable things like the "Force Builds" button to work.
 </description>
</context-param>

To use the CC GUI on ecf2, make a PuTTY connection as follows.

09/11/08 Page 29 of 35 Ted Kubaska

ECF Autobuild System

Then, point your browser to http://localhost:8080/cruisecontrol. You see the following.

Third Stage

We want to incorporate the osu build into our automated build. The osu build consists of plug-
ins that are in an early stage of development, so early that they have not yet passed the stringent
IP requirements that Eclipse puts on its plug-ins. We have every expectation that they will, but

09/11/08 Page 30 of 35 Ted Kubaska

http://localhost:8080/cruisecontrol

ECF Autobuild System

they haven’t yet.

So the plug-ins belonging to the osu build are not kept in our eclipse repository. Rather they are
kept in a repository on another machine at Oregon State called ecf1, and they are accessed
through a web site hosted on ecf1.

I modified the ecf1 site to provide a link to ECF Extra Downloads.

Click on ECF Extra Dailies, and see the available osu downloads. Currently the osu plug-ins
consist of the yahoo, skype, jms, and jgroups plug-ins.

09/11/08 Page 31 of 35 Ted Kubaska

ECF Autobuild System

Originally, we ran all the projects on ecf2. We found, when we did that, that the Skype plugins
were non-functional. The problem was that ecf2 is a 64-bit machine and that the Skype builds
use some 32-bit plugins and fragments from the Eclipse plug-in directory. ecf2 requires a 64-bit
version of Eclipse and a 64-bit version of Java.; the 32-bit versions do not work on ecf2. There
should, I think, be some way of forcing the builds on ecf2 to use the 32-bit plugins and
fragments, but I was not successful in doing this. Finally, I just set up cruisecontrol/ant/tomcat on
ecf1 and run the osu builds on ecf1, and that works.

To add the osu build to cruisecontrol, edit config.xml. The new projects (called osu and
osuDaily) are very similar to the ecf projects.

09/11/08 Page 32 of 35 Ted Kubaska

ECF Autobuild System

<project name="osu" buildafterfailed="false">

 <listeners>
 .
 .
 </listeners>

 <modificationset quietperiod="300">
 <cvs localworkingcopy="${localcopyEXAMPLE}" />
 <cvs localworkingcopy="${OSUlocalcopy}" />
 </modificationset>

 <schedule interval="2700">
 <ant buildfile="OSUcc-build.xml" target="ecf.osuosl" >
 <property name="mapVTag" value="HEAD" />
 <property name="feature" value="ecf.osuosl" />
 <property name="buildIdentifier" value="false" />
 <property name="buildType" value="A" />
 <property name="genFVSuffix" value="true" />
 </ant>
 </schedule>

 <publishers>
 <htmlemail …>
 .
 .
 </htmlemail>
 </publishers>
</project>

Notice that the <modificationset /> is different because the cruisecontrol monitors a different
set of files. Also, the antfile that is called in the <schedule /> task is different, and this antfile
calls a different task called ecf.osuosl.

Inside OSUcc-build.xml, specific build information comes from the directory ecf.osuosl
instead of ecf.core. This specific information consists of stuff like what map files to use, the
location of the CVS repository, and the location of the Eclipse workspace.

Also, when the osuDaily build is performed the resulting zip files are not transferred to
dev.eclipse.org. Rather they are transferred to ecf1.

The osu repository is on ecf1; the build is performed on ecf1 (used to be ecf2), and the
resulting zip files stay on ecf1. Actually, they are transferred to ecf1 from ecf1, so that the code
stays essentially the same.

How does that file transfer occur? Remember the file antscp.xml used in the ecf file transfer?
There’s a corresponding OSUantscp.xml. ecf1 has a copy of the ecf2 public key, just like
dev.eclipse.org. The files are transferred to the directory /home/ted/dailies on ecf1.

Now to have the files available on the ecf1 web site, they must reside in /var/www/localhost/
htdocs. We actually want them in a directory dailies in htdocs. The key authentication only
works for an ordinary user (giving key authentication to root is a silly idea even if it is possible).

09/11/08 Page 33 of 35 Ted Kubaska

ECF Autobuild System

Nor do we want to open up htdocs to a group to which a user has write access. So what I did
was make a link in htdocs to a directory in my home that contains the osu zips.

Then if you have the filenames in an array (called $file), you present them for download as
follows.

foreach ($files as $file) {
 echo '<tr> <td> <p>'
 . $file .'</p></td></tr>';
}

How to get them into a $file array. The following PHP function does that.

function directoryToArray($directory, $recursive) {
 $array_items = array();
 if ($handle = opendir($directory)) {
 while (false !== ($file = readdir($handle))) {
 if ($file != "." && $file != "..") {
 $array_items[] = preg_replace("/\/\//si", "/", $file);
 }
 }
 }
 closedir($handle);
 rsort($array_items,SORT_STRING);
 return $array_items;
}

Then,

$files=directoryToArray("/var/www/localhost/htdocs/dailies",false);

Oh, and the same thing with ecf1 … OSU won’t let us write our own cron job; we must make a
request.

Fourth Stage

I'm going to describe the fourth stage in another file because this one is getting too long. Here's
what happened in our fourth stage.

● We added a number of new projects on ecf2 for a total of nine. The extra projects have
to do with using CVS branches.

● We have a 2.0 and a 2.1 branch. We want to continue work on 2.1 and provide 2.0 for the
Eclipse Ganymede release.

09/11/08 Page 34 of 35 Ted Kubaska

ECF Autobuild System

● We have a branch used for integration with the Eclipse platform. The Eclipse platform
itself uses six ECF plugins/fragments for 3.4. So we need a project that provides these
plugins to the platform on a weekly basis.

● We want projects for the Eclipse 3.3 and 3.4 releases. These release builds must have
their jars signed with Eclipse's Verisign certificate. The difference between ECF provided
for 3.3 and ECF provided for 3.4 is that the 3.3 ECF includes the plugins/fragments that
in 3.4 ECF are provided by the platform. So the 3.4 ECF must not include these plugins.

09/11/08 Page 35 of 35 Ted Kubaska

	Summary
	The Goal
	Defining the Goal
	The Zeroth Stage
	The First Stage
	Download and install CruiseControl.
	Download and Install Ant
	Testing that Ant Works

	Testing that Cruisecontrol Works
	Getting the Build under Cruisecontrol
	Starting Up CruiseControl

	The ECF Builds
	Build Intervals and Quiet Periods
	The ECF Daily Build

	cc-build.xml
	Sending Email
	Uploading Files
	Passphraseless Key Authentication
	Making and Using the Key-Pair on Linux
	Using the Key-Pair on Windows
	Uploading Daily Files
	Making Files Available on eclipse.org.
	Keeping a Week’s Worth of Dailies

	More Detail on the Daily Builds

	Second Stage
	Setting Up the Cruisecontrol Web Reporting Tool
	Using the Web Reporting Tool Remotely
	Getting a Remote Desktop
	Getting a Remote Browser

	Third Stage
	Fourth Stage

