Discovery, Control, and Monitoring
David Merbach

Copyright © 2006 IBM Corp. Available under terms of the Eclipse Public License
http://www.eclipse.org/legal/epl-v10.html

Issues with Storage Discovery and Control
Queries

Locations
Schema

Detectability

Discovery Engine
Flow

Engine
Control Engine

Monitor
Change Detection

Inconsistencies between devices
Performance, Errors, etc. requiring some unique processing

Handle in ‘Process Block’ and ‘DB Mapper’

Scaling
Large amounts of data can be returned by SMI-S calls or other functions

Handle in SAX parsing, chunking

System limitations
Memory, CPU cycles, etc. will become bottlenecks as larger demands are made

Handle in queues, ‘job info’ summary (for analysis), Job Filtering, Distribution

SMI-S

Used to collect Subsystem and Fabric
information

Outband Fabric Discovery

SNMP and Brocade API
Used to collect Fabric, Switch, Connection TPC Data/Device Agent e
information

GS-3

SNMP SMI-S
Bro;a’\l/lc:_eSAPl i SCSI (from agents) %
Inband Data Discovery | =

Raid drive

Collect Host and File level information for SRM
reports

Switch

Switch

Raid drive

Inband Fabric Discovery
Collect Host, Port and Device information

Server

Discovery
SMI-S defines standard algorithms

Reasons for customizations
Some switches optimize with enumerate

instance traversals

Others faster with with association traversal

Different traversal for SMI-S 1.02 vs. 1.1

Overcome specific issues in a vendor CIM/OM

Vendor specific extensions have relationship
information in fields, which can be used to get
association info in 1 query instead of 2

Control

Some subsystems allow groups of hosts to be
masked or mapped to a volume, others do not

Association Traversal is different in the above case
Different traversal for SMI-S 1.02 vs 1.1 for LUN
masking

Vendor-specific extensions are present in control too
e.g getSupportedSize()

SMI-S model is very extensive

Many profiles and subprofiles for subsystems,

hosts, mapping assignments, fabric, clusters,
etc.

Model is very flexible to handle vendor
differences

Many auxiliary classes

Vendors can provide extensions to the mode
Extensions for specific aspects
Extensions for specific fields
Extensions for controls

+ ConformantStandard

CIM:
e ElementConformsToProfile

(© ObjectManager

+ ManagedElement.

Server with Access Pairt,
Software, Cluster (1.0.2)

(M2 SubProfileRequiresProfile
(3 RegisteredProfile + Anteredent
+ ConformantStandard
+ Dependent.
I
5 . «IM»
© RemoteServiceAccessPoint (3 RegisteredSubProfile
ElementConformsToProfile
+ AwailableSaP
+ ManagedElement
+ ManagedElement. + Systemn

SAPAvailableForElement «IMp InstalledSoftwareldentity

© ComputerSystem | o ororent

SystemPackaging
+ Dependent
+ GroupCormponent
ComponentCs + InstalledSoftware
“CIM»
+ Antectedent (3 Softwareldentity
«CIM»
(3 PhysicalPackage

+ PartComponent
“CIMD
ProductPhysicalComponent @ Product

+ GroupCormparent

Detectability- Overlapping Collection

= Multiple collectors may be able to detect a

Collector A Collector B

‘thing’ | |
= Inability of a single collector does not mean . e
that the thing is not detectable by other
collectors
" Exam p I e : Collector A
Fabric collectors can get switch, connection i -

and some host/device info (e.g. ports/nodes)

Switch Switch

|BM Compatible

A failing connection between the switches will
segment the fabric

Storage Subsystem

Collector B

Each switch will only report the information it
can detect

Storage Subsystem

Switch
IBM Compatible

If ANY switch reports then device present
If NO switch reports then device is missing Storage Subsystem

Detectability — Authoritative Source of Information

= Multiple collectors may be able to detect a
‘thing’

= Each collector has same capability

If it can detect the subsystem can detect the
pools and volumes in the subsystem

= Example:
CIM/OM A and B both managing subsystem

Discovery and control operations can be
performed with either

CIM/OM A CIM/OM B

IIII.

Removal of a volume is detectable by either

[

Discovery

Discovery may be segregated, but coordinated
Run on differing management servers

Distributed to agents

Output may be in differing forms
Direct database insert
XML or other format to a file (e.qg. for later upload)
Streamed over a communications session

Input may have differing formats
ESSN parsing
Brocade API
CIM XML
Differences in elements/ordering between vendors

JDBC
Used to migrate from legacy databases or to federate/roll-up database information

Architecture

Input

Output

Split request into individual steps
(jobs) e.g.
DiscoveryAll becomes
- discoverSLP
- discoverSubsystems on CIM/OM
- discoverPoolsForSubsystem
- discoverVolumesForPool
- etc.

Step jobs through the resources
queues (scan -> parse)

Resources doing ‘work’
Pull job from queue and perform

Parse the data (XML stream or
objects) and send to processor

Map the CIM data to TPC helpers
Persist the data

Infrastructure
Domain specific g
Plug-ins =

CIM Queries

Order that queries are constructed and put
together

Handle differences in way queries put together

Communicate with CIM/OM
CIM Client streams commands to CIM/OM

Parses XML response stream

Map data to Output
Normalize to DB schema

Handle different types of responses
Can do other types of output

Client Request

v

CIM Queries

v

Send to CIM/OM

1=

CIM‘OM

Parse stream

v

Map to schema

v

Persist

Generalized algorithms for most devices

Need to account for specific functions

Handle errors/differences in vendor
implementation

Handle performance issues in implementations

Handle differences in SMI-S versions

Mapping requests to processes
Simple name mapping
‘myProcess’ - Process Implementation

One off Mapping by parameters
CIM/OM info
SMI-S version
Profile

Cisco CIM/OM functions

Brocade CIM/OM
functions

Default Functions

Default ‘Get Fabric Info’ function
call ‘get SANs’
call ‘get Switches’
call ‘get Nodes’

Modified ‘Get SANs’ function ‘

‘ Default ‘Get SANs’ function ‘

‘ Default ‘Get Switches’ function ‘

Modified ‘Get Nodes’ function

‘ Default ‘Get Nodes’ function ‘

‘ Default ‘Get Ports’ function ‘

‘ Default ‘Get Port 2 Port’ Function ‘

Need to be able to specify/restructure SMi-
S commands easily

Need to traverse through model to get info

Order matters (1 CIM/OM may be faster with
one traversal, another faster in a different
order)

Provide ‘building block’ processes

SimpleCIMDiscoveryProcess — issues a set of
SMI-S commands (mainly for enumerate
instance calls)

AssociatorCIMQuery — maps an input
parameter to the ‘base’ of the traversal

DiscoverStep — specifies a process to perform,
enumerates through responses and calls any
‘next steps’

getRequest()

getDescription()
getParameterNames()
getParameterType(String)
process(DiscoverRequest, Hashtable)
getParameter(String)
checkParameters(Hashtable)

A [

‘ AssociatorCIMQuery }—

‘ SimpleCIMDiscoverProcess ‘

DiscoverMapperManager
getMapper(String, String)
map(String, String,
StorageSubsystem)
map(String,String, CIMInstance)
map(String, String, Object)

Mapper
getKey(StorageSubsystem)
getKey(CIMInstance)

IStep

4

DiscoverStep
addNextStep(Istep)
process(DiscoverRequest, Hashtable)

‘ TPCtoSMISMapper

Router
perform(DiscoverRequest)
perform(String, Hashtable)

Queue

= Requestor (e.g. process or client) adds
jobs to the engine

= Resources (e.g. CIM Scanner) wait for jobs
= Queue is generic

= Plugable Queues allows custom operations

For ‘CIM Scanner’ want to discard new
requests if one is pending in the queue

For ‘CIM Parsing’ want to replace older
requests with newer requests (which has
newer data)

Observer

‘Requestor’

‘Resource’

General Process
Parse

Parse data from source

SMI-S Parser — uses CIM Client to parse

Fabric Legacy Parser — SAX parser
Send to DB Mapper

‘Processor’ is basic block that wrappers
access to DB Mapper

Extension for SMI-S and Legacy data

CIM Processor incorporates request
information as applicable

Associator response only contains decedent
info

CIM Processor adds calls/info to process
Antecedent and Associations

CIMParser Queue Controller Enumeration

CIMProcessor Mapper Manager ‘DB Mapper’

getNextJob
L

getNext

handleEntity

> getTable

processEntity

CIM Client

= SBLIM (IBM donated) CIM Client adds:

SAX parsing
Object re-use

Client

‘ Create

S

L

Query (e.g. associator names)

getNext

L

Query

CIM/OM

Read

Send command

Stream

Y

Parse Header/Error info

o

close

Read

Y

Parse next record

o

Empty/Free Stream for subsequent
calls

TPC uses many information sources (scanners) to collect SAN information. E.g.:
CIMOMs: storage subsystem, switch
Fabric agents: host-based inband, out-of band dusing SNMP or proprietary APIs
Data (TSRM) agents: host-based, inband.

Authoritative scanner: if it does not report element it previously reported, its gone
Non-authoritative: No such conclusion can be drawn from report of single scanner

Consensus: element declared as “missing” only if all scanners that reported it in earlier scans
cannot see it any more

Detectability Service: works with Discovery Engine to track what’s “missing”

CIMOM (auth for LU) Fabric agentl (non-auth) ———| Switchl
(e.g., Agent 1 does not report switch 2’s
Storage subsystem ports once ISL inactive)
Storage volume (LU) Fabric agent2(non-auth) Switch2

