
Using EJBs in Eclipse RCP
Experiences

Eclipse Finance Day Zürich
16.10.2012

Markus Hediger
Philippe Marschall

The Application Ⅰ

• acquiring processing back office

• manage master data

• manage business rule

• fix transaction errors

The Application Ⅱ

• client-server application

• Java EE application server with EJBs

• Eclipse RCP client

• EJB remoting

server-module module-ejb.jar

module-ejb-client.jar

application.ear

rcp-client.execlient-module

The Problem

• Calling EJBs from OSGi

• EJB client library intended for use in Java EE
container

• uses ThreadContextClassLoader (TCCL)

• assumes having access to all application
classes

• isn’t considered sexy

Bad Solutions Ⅰ

• Copy all ejb-client.jars into a single bundle

Bad Solutions Ⅱ

• Buddy classloading

Old Dependencies

central-ejb-client-bundle vendor-ejb-client-library

first-client-module second-client-module

DependencyBuddy Dependency/Buddy

A Less Bad Solution

New Dependencies

central-ejb-client-bundle vendor-ejb-client-library

first-client-module second-client-module

Dependency Dependency

Look Up Proxy

• ask central-ejb-client-bundle for service proxy

• look up client bundle

• find JNDI name

• get bundle class loader

• switch TCCL to bundle class loader

• do JNDI look up

Finding the Right Bundle

• Extension point to map business interface
to JNDI names

• implicitly provide client bundle

Service Call Ⅰ

• after proxy look up don’t return raw proxy

• wrap with another proxy that switches
TCCL before invoking

Service Call Ⅱ

• Infrastructure to make service calls in
Eclipse Jobs instead of GUI thread

OSGi Cleanness

Pros

• several small bundles

• no Dynamic-Import

• no buddy class loading

• lazy bundle activation

Cons

• no services, no OSGi remoting

• still uses TCCL

• Equinox rather than OSGi API

• client bundles depend on vendor libraries

Better Solution

• Vendor support

• OSGi specification

• OSGi remote services

Development

• connect Java EE server development and
RCP client development

• quick turn arounds

• source dependencies for easy refactorings

• no budget for big tooling investments

The old way

• ejb-client.jar weren’t bundles

• had to be wrapped in a custom library
project (~80 projects)

• building project and copying JARs was
required

The new way

• turn ejb-client.jar into bundles

• source dependency from RCP projects to
EJB projects

• Export-Packge to hide EJBs, services, DAOs

• generate as much as possible

• only client projects are PDE projects

Generate

• META-INF/MANIFEST.MF

• plugin.properties

• plugin.xml

META-INF/MANIFEST.MF

• generate from POM

• custom Maven plugin

• generate-resources phase

• <dependency/> ! Require-Bundle

• very specific rules about mapping
groupId:artifactId to bundle symbolic name

plugin.xml

• map service interface to JNDI name

• derived from EJB

• custom annotation processor

• run by JDT when saving EJBs

• run by Maven during build

Future Improvements

• Don’t generate META-INF and plugin.xml
into project root

• MANIFEST.MF is present in ejb.jar as well

Last Slide

• with a bit of effort cumbersome task could
be automated

• patch work but works quite well

