

@Anth0_

SIGFOX doesn't sell chipsets SIGFOX doesn't build solutions SIGFOX invented a radio protocol SIGFOX operates its own global network

Core concepts

An object emits a radio message Our antennas pick this message We transmit this message to your server

Complex ?

You send an **AT command :**

SigFox.print(« AT\$SF=Payload »);

You receive the answer **on your server**

via Callbacks or API

Complex ?

Develop, subscribe, & certify **once**

& ship everywhere (inside Radio Zones)

Very cheap to develop Sigfox solutions & deploy it. (between 1 and 10€/year)

Long range

Ideal cases

+200 kms(record at 1024)

Reality

City : 2-10 km **Rural** : up to 100km.

= Network cheaper to deploy.

7

ETSI Regulation

1% emission each hour rule.

1% of 1 hour = 3600 sec / 100 = **36 secs of emission**

1 message sigfox = **6 seconds**

So we can send 36/6 = 6 messages per hour (12 bytes)

Low cost != cheap

Very low subscription fees **but high SLA**

• (in deployed environments, success rate is >99%)

Simple hardware = **higher battery life**

• Only technology able to predict battery life consumption

Discrete objects = **a lot of them**

• more objets on the network mean cheaper price for customers

Different & complementary

- We don't compete with others, we **complete** them.
- So cheap & easy to integrate, lots of use case will use Sigfox as primary or secondary.
- Sigfox + (GSM, BLE, WiFi, LoRa, & others) makes a lot of sens
- It whole depends of the **use case**.

Spot it

- New geolocation service based on triangulation of BTS
- Works with all devices on our network, no additional cost
- KM accuracy , depends on density.
- Perfect for most of industrial tracking use cases

Ultra Narrow Band

Radio Spectrum

We listen **200 KHz** on the band

(we could do more)

each message is 100Hz wide

Radio spectrum

Frequencies

ISM bands : Shared and non-licensed

Comply with local regulations

- Europe : **868MHz** (ETSI 300-200)
- USA: 902MHz (FCC part 15)
- etc.

Hardware solutions

Stack

- Stack is **free**, everybody can implement
- Preloaded with modules & SoC
- Can be integrated in compatible transceivers
- Distributed as binaries, compiled for various MCUs
- Can be integrated in most of compatible Sub-GHZ HW

Lots of different options for different needs

Modules : Easy to integrate, start at <2\$

• TDNext, ATIM, Wisol, Innocom, M2COMM, etc. Lots of good options

SoCs : based on ref designs, a bit more modular

• ONSemi, NXP (Qualcomm) , Atmel (Microchip) etc.

Transceivers : implement the stack yourself

• STMicro, Texas Instruments, Semtech, etc.

Open ecosystem = fair competition on prices important to ensure maximum number of use cases. How to start?

Couple of minutes

Lots of devkits available (from 20€)

Connectivity is included for developers

Coverage

Use cases

Examples of solutions already in production

Gadgets

Water metering

silver economy

IoT

Smart parking

fastprk

Predictive maintenance

Connected beer

Connected **Pallets**

CAPTURS Outdoor tracker

CAPTURS

Oil & Gas tank monitoring

ELM Leblanc Connected boiler

Burnson

SensDumpster Connected trash

Weenat Agriculture sensors