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Act I

The Story Begins
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The Setting

� RBC Capital Markets

� Global Fixed Income Division

� Global development and user base

• New York, London, Toronto

� Main focus on front office trading applications

• Real-time display of fast-moving market data

� Numerous trading products

• Note instruments

• FRNs

• Cash instruments (bonds, futures)

• Derivatives
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A Little History

� Application development historically product-focused

• Trading localized to product types

• Multiple product-specific application systems

• Customized to needs of individual products

• Varying levels of functionality across product application systems

Note Instruments Cash InstrumentsFRNs Derivatives

Pricing

Risk

Trade Capture

eCommerce
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A Little History, continued

� Shift to functional focus

• Cross-asset trading

• Any product, any region, any currency

• Increased need for functional integration

• New development; Multiple function-specific applications

Pricing Trade CaptureRisk eCommerce

Note Instruments

FRNs

Cash Instruments

Derivatives
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User Experience – What We Have

� n Product-specific applications

� m Function-specific applications

� Lots of user context switching 

across application UIs

� Reduced efficiency, increased cost

� Big problem
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User Experience – What We Want

� One integrated UI where users can access 

relevant product and functional 

application components

� Extremely high value to users

� It can be done!

• Eclipse demonstrates this

• Eclipse solves many of the hard 
problems
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Things That Are In Common

� Bootstrap installer

� Unified user authentication (SSO)

� Automatic application component provisioning

� Inter-component communication mechanisms

� Master application UI window

� UI extension points

� Common look and feel for components

� User preference management

� Component model



9Eclipse Banking Day NYC, 2008

Things That Are Different

� Many different application components

� Multiple independent application 

development teams

� Different development, testing and release 

schedules

� Different users (e.g. traders, salespeople, 

support staff) will need different sets of 

application components
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Act II

Helios
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Helios

� Eclipse RCP-based UI container

� Hosts multiple application plugins

� Provides common services, mainly through plugins

• Eclipse, Spring, etc

� Insulates component developers from some degree of complexity

• Pre-built, pre-configured RCP application

• Encapsulates common environment configuration, e.g. connection to RBC 
Active Directory LDAP
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Development Notes

� A little less than a year old, 1 developer for most of that time

� Lots of functionality comes for free with Eclipse, Spring plugins

� Had to build some things; had to configure and integrate a lot of things
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Installation and Provisioning

� Installer

• One installer for everyone

• Simple, standard installation for all workstations

� Executable

• One executable for everyone

• Application components are automatically 
downloaded and installed when the user logs in

� Provisioning

• Users are associated with provisioning groups

• Provisioning groups have associated product 
configurations which specify what components 
to install for members of the group

• P2-based automatic provisioning

Trader Joe

GTC provisioning group

GTC_productConfig.xml
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Authentication and Authorization

� Login dialog is the first thing the user sees

� Uses Spring Security

� Authenticates against RBC Active Directory LDAP

� Users can be associated with one or more security roles

� User security role info is installed in the SecurityContext on 

successful login

� The SecurityContext can then be queried for role membership 

to drive authorization behavior, e.g.:

• if (AuthUtil.hasAuthority("ROLE_ADMINISTRATOR")) {

// do something

}

� The SecurityContext is available to any component hosted in 

Helios for authentication/authorization
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Master Application Window
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Master Application Window
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Master Application Window
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Common Look And Feel

� Standard set of UI controls

• Mostly stock SWT controls

• A few custom controls (date picker, data grid)

� Eclipse Forms Framework

� Built UI framework on top of above to encapsulate higher-

order behavior and associations

• Labels associated with form fields

• Required field rendering

• Etc

� Looking to also provide declarative UI specification

• Eclipse modeling tools
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Inter-Component Communication

� OSGi services

• Can easily expose classes as OSGi services or get references to OSGi
services via Spring DM

• <osgi:service ref="application" interface="org.eclipse.equinox.app.IApplication"/>

• <osgi:reference id="ldapAuthoritiesPopulator" 
interface="org.acegisecurity.providers.ldap.LdapAuthoritiesPopulator"/>

� Eclipse extension points

� Spring Remoting
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User Preferences Management

� Eclipse automatically saves user preferences on application shutdown and 

restores UI state when the application is restarted

� Eclipse normally stores user preferences in the workspace folder

� We want to move preferences to the server side

• Allow preferences to be shared between users

• Allow support to retrieve and locally apply a user’s preferences for 
troubleshooting purposes
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Act III

The Wider World
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Think Different

� Major shift from monolithic to component-oriented development

• Developing parts rather than entire applications

� Much more reliant on common/shared stuff

• Technology stack, component model, development infrastructure

� Requires coordination across development teams

• Shared vision of macro application functionality

• Need to make sure parts can work together

� The most crucial issue in making component-oriented development work is not 

really a technical one – it is figuring out how to work together as part of a larger 

development community

� Not just interested in Eclipse technologies, but also Eclipse development model
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Fusion

� Moniker for shared development at RBC

� Emulating Open Source development model

� Core

• Core Technology team

• Coordinate and are 100% allocated to Fusion projects

� Contributors

• Individuals from other teams that develop for Fusion

• Allocated part time

• Represent application requirements in Fusion development and communicate 
Fusion knowledge back to application team

� Community

• People and teams that use Fusion products
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Development Process Infrastructure

� Version control – source code repository, release tags, maintenance branches

� Automated build – build from source, continuous integration

• Custom maven plugin wrapper for PDE Build

– Encapsulates build conventions (directory locations, etc)

– Reduces number of required configuration parameters

� Artifact repository – well-known location to find released artifacts

� Issue tracking system – plan and track releases

� Wiki – knowledge repository, reference information

� Forum – public discussions, support

� Favor lots of transparency, accessibility

� Always looking to improve our process and tooling
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Rules Of Thumb

� Make sure you’re building something people need, with the quality that they want

� Make others part of the solution and then you won’t have to worry so much about 

adoption

� Get support from the top (management) to make resource and schedule 

accommodations for shared technology projects
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Act IV

Epilogue
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So Here We Are

� Helios currently used by 2 FI applications in standalone mode

� Those and several other applications will be starting to migrate onto Helios in 

shared mode in early 2009

� Strategic application integration platform for RBC Fixed Income applications

� Impacting how applications are being developed and composed
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Parting Shots

� Combination of Eclipse and Spring is extremely powerful

� Technology alone is not sufficient for success

� Need to pay a lot of attention to how the technology will be used and who will be 

using it

� Eclipse allowed us to address the really high value problem first

� This is just the beginning, there’s a long way to go from here

• Adding additional shared functionality to Helios

• Other middle and backend integration infrastructure


