
Edwin Park

Head, FICT Core Technology

Front Office Fixed Income Application Integration - A Story

December 9, 2008



2Eclipse Banking Day NYC, 2008

Act I

The Story Begins



3Eclipse Banking Day NYC, 2008

The Setting

� RBC Capital Markets

� Global Fixed Income Division

� Global development and user base

• New York, London, Toronto

� Main focus on front office trading applications

• Real-time display of fast-moving market data

� Numerous trading products

• Note instruments

• FRNs

• Cash instruments (bonds, futures)

• Derivatives



4Eclipse Banking Day NYC, 2008

A Little History

� Application development historically product-focused

• Trading localized to product types

• Multiple product-specific application systems

• Customized to needs of individual products

• Varying levels of functionality across product application systems

Note Instruments Cash InstrumentsFRNs Derivatives

Pricing

Risk

Trade Capture

eCommerce



5Eclipse Banking Day NYC, 2008

A Little History, continued

� Shift to functional focus

• Cross-asset trading

• Any product, any region, any currency

• Increased need for functional integration

• New development; Multiple function-specific applications

Pricing Trade CaptureRisk eCommerce

Note Instruments

FRNs

Cash Instruments

Derivatives



6Eclipse Banking Day NYC, 2008

User Experience – What We Have

� n Product-specific applications

� m Function-specific applications

� Lots of user context switching 

across application UIs

� Reduced efficiency, increased cost

� Big problem



7Eclipse Banking Day NYC, 2008

User Experience – What We Want

� One integrated UI where users can access 

relevant product and functional 

application components

� Extremely high value to users

� It can be done!

• Eclipse demonstrates this

• Eclipse solves many of the hard 
problems



8Eclipse Banking Day NYC, 2008

Things That Are In Common

� Bootstrap installer

� Unified user authentication (SSO)

� Automatic application component provisioning

� Inter-component communication mechanisms

� Master application UI window

� UI extension points

� Common look and feel for components

� User preference management

� Component model



9Eclipse Banking Day NYC, 2008

Things That Are Different

� Many different application components

� Multiple independent application 

development teams

� Different development, testing and release 

schedules

� Different users (e.g. traders, salespeople, 

support staff) will need different sets of 

application components



10Eclipse Banking Day NYC, 2008

Act II

Helios



11Eclipse Banking Day NYC, 2008

Helios

� Eclipse RCP-based UI container

� Hosts multiple application plugins

� Provides common services, mainly through plugins

• Eclipse, Spring, etc

� Insulates component developers from some degree of complexity

• Pre-built, pre-configured RCP application

• Encapsulates common environment configuration, e.g. connection to RBC 
Active Directory LDAP



12Eclipse Banking Day NYC, 2008

Development Notes

� A little less than a year old, 1 developer for most of that time

� Lots of functionality comes for free with Eclipse, Spring plugins

� Had to build some things; had to configure and integrate a lot of things



13Eclipse Banking Day NYC, 2008

Installation and Provisioning

� Installer

• One installer for everyone

• Simple, standard installation for all workstations

� Executable

• One executable for everyone

• Application components are automatically 
downloaded and installed when the user logs in

� Provisioning

• Users are associated with provisioning groups

• Provisioning groups have associated product 
configurations which specify what components 
to install for members of the group

• P2-based automatic provisioning

Trader Joe

GTC provisioning group

GTC_productConfig.xml



14Eclipse Banking Day NYC, 2008

Authentication and Authorization

� Login dialog is the first thing the user sees

� Uses Spring Security

� Authenticates against RBC Active Directory LDAP

� Users can be associated with one or more security roles

� User security role info is installed in the SecurityContext on 

successful login

� The SecurityContext can then be queried for role membership 

to drive authorization behavior, e.g.:

• if (AuthUtil.hasAuthority("ROLE_ADMINISTRATOR")) {

// do something

}

� The SecurityContext is available to any component hosted in 

Helios for authentication/authorization



15Eclipse Banking Day NYC, 2008

Master Application Window



16Eclipse Banking Day NYC, 2008

Master Application Window



17Eclipse Banking Day NYC, 2008

Master Application Window



18Eclipse Banking Day NYC, 2008

Common Look And Feel

� Standard set of UI controls

• Mostly stock SWT controls

• A few custom controls (date picker, data grid)

� Eclipse Forms Framework

� Built UI framework on top of above to encapsulate higher-

order behavior and associations

• Labels associated with form fields

• Required field rendering

• Etc

� Looking to also provide declarative UI specification

• Eclipse modeling tools



19Eclipse Banking Day NYC, 2008

Inter-Component Communication

� OSGi services

• Can easily expose classes as OSGi services or get references to OSGi
services via Spring DM

• <osgi:service ref="application" interface="org.eclipse.equinox.app.IApplication"/>

• <osgi:reference id="ldapAuthoritiesPopulator" 
interface="org.acegisecurity.providers.ldap.LdapAuthoritiesPopulator"/>

� Eclipse extension points

� Spring Remoting



20Eclipse Banking Day NYC, 2008

User Preferences Management

� Eclipse automatically saves user preferences on application shutdown and 

restores UI state when the application is restarted

� Eclipse normally stores user preferences in the workspace folder

� We want to move preferences to the server side

• Allow preferences to be shared between users

• Allow support to retrieve and locally apply a user’s preferences for 
troubleshooting purposes



21Eclipse Banking Day NYC, 2008

Act III

The Wider World



22Eclipse Banking Day NYC, 2008

Think Different

� Major shift from monolithic to component-oriented development

• Developing parts rather than entire applications

� Much more reliant on common/shared stuff

• Technology stack, component model, development infrastructure

� Requires coordination across development teams

• Shared vision of macro application functionality

• Need to make sure parts can work together

� The most crucial issue in making component-oriented development work is not 

really a technical one – it is figuring out how to work together as part of a larger 

development community

� Not just interested in Eclipse technologies, but also Eclipse development model



23Eclipse Banking Day NYC, 2008

Fusion

� Moniker for shared development at RBC

� Emulating Open Source development model

� Core

• Core Technology team

• Coordinate and are 100% allocated to Fusion projects

� Contributors

• Individuals from other teams that develop for Fusion

• Allocated part time

• Represent application requirements in Fusion development and communicate 
Fusion knowledge back to application team

� Community

• People and teams that use Fusion products



24Eclipse Banking Day NYC, 2008

Development Process Infrastructure

� Version control – source code repository, release tags, maintenance branches

� Automated build – build from source, continuous integration

• Custom maven plugin wrapper for PDE Build

– Encapsulates build conventions (directory locations, etc)

– Reduces number of required configuration parameters

� Artifact repository – well-known location to find released artifacts

� Issue tracking system – plan and track releases

� Wiki – knowledge repository, reference information

� Forum – public discussions, support

� Favor lots of transparency, accessibility

� Always looking to improve our process and tooling



25Eclipse Banking Day NYC, 2008

Rules Of Thumb

� Make sure you’re building something people need, with the quality that they want

� Make others part of the solution and then you won’t have to worry so much about 

adoption

� Get support from the top (management) to make resource and schedule 

accommodations for shared technology projects



26Eclipse Banking Day NYC, 2008

Act IV

Epilogue



27Eclipse Banking Day NYC, 2008

So Here We Are

� Helios currently used by 2 FI applications in standalone mode

� Those and several other applications will be starting to migrate onto Helios in 

shared mode in early 2009

� Strategic application integration platform for RBC Fixed Income applications

� Impacting how applications are being developed and composed



28Eclipse Banking Day NYC, 2008

Parting Shots

� Combination of Eclipse and Spring is extremely powerful

� Technology alone is not sufficient for success

� Need to pay a lot of attention to how the technology will be used and who will be 

using it

� Eclipse allowed us to address the really high value problem first

� This is just the beginning, there’s a long way to go from here

• Adding additional shared functionality to Helios

• Other middle and backend integration infrastructure


