
Marc Khouzam

Making your debugging

efforts count:
Best practices with the CDT Debugger

2
2

➢ Working with CDT Debug since 2007

➢ CDT project co-lead, lead for Debug component

➢ Things you don't like about CDT Debug are probably my fault

➢ You can help get them improved
➢ Give feedback
➢ Open bugs
➢ Contribute

ABOUT Me

3

AGENDA

› Running the debugger

› No more Printf-debugging

› Examining debugging data

› Controlling execution

› Multi-thread and beyond

› More advanced topics

› Future plans

And one demo chosen
by YOU

4

Running the debugger

5
5

Stand-Alone Debugger

› Easy installation through its own package
– https://eclipse.org/cdt/downloads.php
– https://wiki.eclipse.org/CDT/StandaloneDebugger

6
6

Stand-Alone Debugger

› Easy launch: ./cdtdebug -e myBinary

7

Post-Mortem Debug

› Examining a core file: Variables, Registers, Memory
› ./cdtdebug -c coreFile -e matchingBinary

8
8

Project-less Debug

› Debug any binary!

9

No more Printf-Debugging

10

Printf Debugging

 Still much too popular

– Comfortable, familiar, easy

 Costly efficiency limitations

– Expensive debug cycle

1.Recompiling

2.Redeploying to target

3.Repeating steps to reproduce issue

– Info provided is fixed per debug cycle

➔ Multiple such debug cycles

11

Dynamic-Printf

COMPILED
PRINTF

DEBUGGER

› Familiarity meets flexibility and efficiency!

DYNAMIC PRINTF

12

Dynamic-Printf

› Printf dynamically inserted by debugger in executing program

› Prints in same location as compiled-printfs

› Same syntax as compiled-printf

› No recompiling! No redeploying!

13

Dynamic-Printf

› Handled as CDT breakpoints

15

Examining Debugging Data

16

Advanced Debug Hover

› In-hover expression view

› Detail pane

› User can modify data directly

17

Pretty-Printing

› STL classes inspect poorly e.g., Vector, List, Map

18

Pretty-Printing

› Pretty-printers provided with STL library

› Values of elements can even be modified by user!

19

Per-Element Format

› Ability to set format per element

› Variables, Expressions, Registers views

20

Modifying data

› Modifying data during execution:

– Memory view
– Variables view
– Registers view
– Expressions view
– Hover

21

Return Value Display

› Return value shown after step-return

Return VAlue On Step-Over

Applies to every process

› Currently return value shown only after step-return

› Plans to show return value after a step-over

› Could be multiple values for a line such as:

– add (multiply(6,2), divide(9, 3));

Enhanced-Expressions

› Shell-like pattern-matching for variables and registers

24

› Support for pattern-matching and expressions groups

› Provides alphabetical sorting

– Pattern-matched local variables

• =v?r – Show all local vars matching pattern

• =* – Show all local vars alphabetically

– Array ranges

• =myarray[30-40] – Show elements 30 to 40

• =myarray[1-3,20,23-24] – Show elements 1,2,3,20,23,24

Enhanced-Expressions

25

› Support for defining expressions and expressions groups

– Pattern-matched registers

• =$xmm* – Show all registers starting with xmm

• =$* – Show all registers

– Semi-colon-separated groups

• var1; var2 – Group which children are var1 and var2

• var1;=* – Show all local vars with var1 being shown first

Enhanced-Expressions

26

Enhanced-Expressions

› Super-set of Variables and of Registers views

30

Controlling Execution

31

Run-to-line

› Run-to-line

– Ctrl+R – Execute program until selected code line

– Or right-click on selected line in editor for menu option

32

› Ability to specify which method to step into

– One step to step into 'substract' instead of 5

Step-Into-Selection

33

Move-to-line & Resume-at-line

› Move-to-line: set execution line to selected one

› Resume-at-line: move-to-line and automatically resume

› From Run menu or editor right-click menu

34

Reverse Debugging

New buttons to
control reverse

execution

STEP PROGRAM BACKWARDS

› Recording of program execution

› Replay in reverse

› Allows to examine past execution
without restarting it

› Reverse-step, reverse-resume

› Can use breakpoints set in the 'past'

35

Reverse Debugging

› Software recording

– Code path

– Variables changes

– Register changes

– Memory changes

36

Reverse Debugging

› Hardware recording

– Code path only

– Requires Intel(R) processor

Multi-thread and beyond

39

Non-Stop Debugging

› Program continues execution while suspending some threads

› Reduced intrusiveness

Multi-process debugging

40

Debug process
interactions

One gdb
 controlling many

processes

› Crowded display when program has many threads

– What is really of interest?

– Threads actively being debugged, i.e., suspended

– Enable from preferences

Focus on Suspended Threads

46

More Advanced Topics

47

GDB and gdb console

› GDB is the brains behind CDT Debug

› Can use gdb command-line from eclipse

› Currently very basic.

49

Full GDB Console

› Targeting CDT 9.1 and GDB 7.12 (by September 2016)

51

Disassembly View

› Shows disassembly of code (optionally with source)

› Supports breakpoints like in editor (and dynamic-printf!)

› Step/resume/suspend from Disassembly view

52

multicore visualizer

58

Future Plans

59

Global Breakpoints

Applies to every process

Auto attach when hit

Un-started or short lived process

› Contribution to Linux Kernel ongoing

60

● IT Sets to control groups of elements
● About multicore

– Step group of threads or processes

– Set breakpoint on a subset of threads

– Resume execution on a core or set of cores

ITSETS

● Improved handling of breakpoints
● Showing each installed location per breakpoint
● ...

● Improved Memory view
● Showing registers and variables
● …

● Evolving Visualizer
● Better support when dealing with hundreds of cores
● ...

More ideas

62

Conclusion

63

Conclusion

› Don't accept printf-debugging. This is 2016!

› Debugger will save you time

› Debugging does not have to be difficult

› Help your team improve

– Lead by example

– Share knowledge, success stories

Evaluate the SessionsEvaluate the Sessions

Sign in and vote at eclipsecon.orgSign in and vote at eclipsecon.org

- 1- 1 + 1+ 100

Some References

› CDT Project, http://www.eclipse.org/cdt

› CDT FAQ, http://wiki.eclipse.org/CDT/User/FAQ

› CDT Debug workgroup
http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup

› CDT Wiki, http://wiki.eclipse.org/CDT

66
66

Final Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 44
	Slide 46
	Slide 47
	Slide 49
	Slide 51
	Slide 52
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

