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efforts count: 
Best practices with the CDT Debugger
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➢ Working with CDT Debug since 2007

➢ CDT project co-lead, lead for Debug component

➢ Things you don't like about CDT Debug are probably my fault

➢ You can help get them improved
➢ Give feedback
➢ Open bugs
➢ Contribute

ABOUT Me
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AGENDA

› Running the debugger

› No more Printf-debugging

› Examining debugging data

› Controlling execution

› Multi-thread and beyond

› More advanced topics

› Future plans

And one demo chosen 
by YOU
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Running the debugger
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Stand-Alone Debugger

› Easy installation through its own package
– https://eclipse.org/cdt/downloads.php
– https://wiki.eclipse.org/CDT/StandaloneDebugger
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Stand-Alone Debugger

› Easy launch: ./cdtdebug -e myBinary
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Post-Mortem Debug

› Examining a core file: Variables, Registers, Memory
› ./cdtdebug -c coreFile -e matchingBinary
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Project-less Debug

› Debug any binary!
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No more Printf-Debugging
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Printf Debugging

 Still much too popular

– Comfortable, familiar, easy

 Costly efficiency limitations

– Expensive debug cycle

1.Recompiling

2.Redeploying to target

3.Repeating steps to reproduce issue

– Info provided is fixed per debug cycle

➔ Multiple such debug cycles
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Dynamic-Printf

COMPILED
PRINTF

DEBUGGER

› Familiarity meets flexibility and efficiency!

DYNAMIC PRINTF
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Dynamic-Printf

› Printf dynamically inserted by debugger in executing program

› Prints in same location as compiled-printfs

› Same syntax as compiled-printf

› No recompiling! No redeploying!
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Dynamic-Printf

› Handled as CDT breakpoints
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Examining Debugging Data
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Advanced Debug Hover

› In-hover expression view

› Detail pane

› User can modify data directly
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Pretty-Printing

› STL classes inspect poorly e.g., Vector, List, Map
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Pretty-Printing

› Pretty-printers provided with STL library

› Values of elements can even be modified by user!
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Per-Element Format

› Ability to set format per element

› Variables, Expressions, Registers views
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Modifying data

› Modifying data during execution:

– Memory view
– Variables view
– Registers view
– Expressions view
– Hover
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Return Value Display

› Return value shown after step-return 



Return VAlue On Step-Over

Applies to every process

› Currently return value shown only after step-return

› Plans to show return value after a step-over

› Could be multiple values for a line such as:

– add ( multiply(6,2), divide(9, 3) );



Enhanced-Expressions

› Shell-like pattern-matching for variables and registers
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› Support for pattern-matching and expressions groups

› Provides alphabetical sorting

– Pattern-matched local variables

• =v?r  – Show all local vars matching pattern

• =* – Show all local vars alphabetically 

– Array ranges

• =myarray[30-40] – Show elements 30 to 40

• =myarray[1-3,20,23-24] – Show elements 1,2,3,20,23,24

Enhanced-Expressions
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› Support for defining expressions and expressions groups

– Pattern-matched registers

• =$xmm* – Show all registers starting with xmm

• =$* – Show all registers

– Semi-colon-separated groups

• var1; var2 – Group which children are var1 and var2

• var1;=* – Show all local vars with var1 being shown first

Enhanced-Expressions
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Enhanced-Expressions

› Super-set of Variables and of Registers views



30

Controlling Execution
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Run-to-line

› Run-to-line 

– Ctrl+R – Execute program until selected code line

– Or right-click on selected line in editor for menu option
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› Ability to specify which method to step into

– One step to step into 'substract' instead of 5

Step-Into-Selection
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Move-to-line & Resume-at-line

› Move-to-line: set execution line to selected one

› Resume-at-line: move-to-line and automatically resume

› From Run menu or editor right-click menu
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Reverse Debugging

New buttons to 
control reverse 

execution

STEP PROGRAM BACKWARDS

› Recording of program execution

› Replay in reverse

› Allows to examine past execution 
without restarting it

› Reverse-step, reverse-resume

› Can use breakpoints set in the 'past'
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Reverse Debugging

› Software recording

– Code path

– Variables changes

– Register changes

– Memory changes
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Reverse Debugging

› Hardware recording

– Code path only

– Requires Intel(R) processor



Multi-thread and beyond
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Non-Stop Debugging

› Program continues execution while suspending some threads

› Reduced intrusiveness



Multi-process debugging
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Debug process 
interactions

One gdb
 controlling many 

processes



› Crowded display when program has many threads

– What is really of interest?

– Threads actively being debugged, i.e., suspended

– Enable from preferences

Focus on Suspended Threads



46

More Advanced Topics
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GDB and gdb console

› GDB is the brains behind CDT Debug

› Can use gdb command-line from eclipse

› Currently very basic.
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Full GDB Console

› Targeting CDT 9.1 and GDB 7.12 (by September 2016)
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Disassembly View

› Shows disassembly of code (optionally with source)

› Supports breakpoints like in editor (and dynamic-printf!)

› Step/resume/suspend from Disassembly view
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multicore visualizer



58

Future Plans
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Global Breakpoints

Applies to every process

Auto attach when hit

Un-started or short lived process

› Contribution to Linux Kernel ongoing
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● IT Sets to control groups of elements
● About multicore

– Step group of threads or processes

– Set breakpoint on a subset of threads

– Resume execution on a core or set of cores

ITSETS



● Improved handling of breakpoints
● Showing each installed location per breakpoint
● ...

● Improved Memory view
● Showing registers and variables
● …

● Evolving Visualizer
● Better support when dealing with hundreds of cores
● ...

More ideas
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Conclusion
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Conclusion

› Don't accept printf-debugging. This is 2016!

› Debugger will save you time

› Debugging does not have to be difficult

› Help your team improve

– Lead by example

– Share knowledge, success stories



Evaluate the SessionsEvaluate the Sessions

Sign in and vote at eclipsecon.orgSign in and vote at eclipsecon.org

- 1- 1 + 1+ 100



Some References

› CDT Project, http://www.eclipse.org/cdt

› CDT FAQ, http://wiki.eclipse.org/CDT/User/FAQ

› CDT Debug workgroup 
http://wiki.eclipse.org/CDT/MultiCoreDebugWorkingGroup 

› CDT Wiki, http://wiki.eclipse.org/CDT
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Final Q&A
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