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DeepReinforcement Learning

Markov DecisionProcess

C Environment(AtariBreakou)

C AgentperformingActions(Left, Right Release Ball)
C State(Brickslocation/ directionof ball, X 0

C Rewards(A Brickis hit)

Environment

State

Reward @

Action



DeepReinforcement Learning

Q-Learning(simplified
C MarkovDecisionProcess

C Q(s a)Highestsumof future Rewardsfor Action a

initialize Q randomly
assume initial state s,
repeat

execute a to maximize Q(s;, a)
observe r and new state s,
set Q= update( Q r, Si)
set s, = s,

until terminated



DeepReinforcement Learning

DeepQ Learning (DQN)

C Q Learning

C Q(s a =DeepNeuralNetwork (DNN)

¢ RetrainDNNregularly(usingA Uo®réexperience

DNN — Q(s, a)

Action
Left, Right Release




DON
Atari Breakout

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but
itis yet too clumsy to manage.




MachineLearningConcepts
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Gettingthe Data

Challenges

C Gettingthe RIGH datafor the task

C AndLOTSsef it

C Howeverthere isneverenoughdata X

Real WorldLessons
C Crucialfor successfuML projects

C Reallynot the excitingPartof ML
C Alwaystakesmuchlongerthan planned
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Supervised_earning
T Learningrom Examples
T RightAnswersare known

Unsupervised_earning
T DiscoverStructurein Data
T DimensionalityReduction

Reinforcement Learning
T Interactionwith Dynamic Environmen
+ RewardFunction




