A\

Daniel Megert

Platform and JDT Lead

Eclipse PMC Member

IBM Rational Zurich Research Lab

@9 S



1 S

Eclipse and Java™ 8

* New Java language features
= Eclipse features for Java 8

" Behind the scenes

EClipSe
S — &



WY ST

New Java Language Features

=2 JSRs

= JSR-335: Lambda Expressions
= JSR-308: Annotations on Java Types

= 2 JEPs

= JEP 118: Method Parameter Reflection
= JEP 120: Repeating Annotations

=Cli PSS
S — &



A 1 S
JSR-335: Two New Type of Methods

" Default methods

— Previous names:

* Defender methods
* Virtual extension methods

= Static interface methods
— No OOP here!

* Method must be qualified with exact interface type

SClI PSS
© 2014 IBM Corporation @’)




BN |
Default Methods

= Intention
— Allow evolution of interfaces (esp. in libraries)

— Methods can be added to interface without API breakage
— Why part of JSR-3357

— Allows to add new methods that take a lambda expression:
java.util.function.Function<T, R>

= Consequences

— Multiple inheritance?
— Yes, but compiler throws error if same method is inherited
— Need to resolve manually with new construct: l.super.m()

© 2014 IBM Corporation




| e
JSR-335: Lambda Expressions

= Many names used in the past

— Lambda Expressions, Closures, Anonymous Methods
* Function + “captured state” (can have non-locals)
= Paradigm of passing a "code block as data"

= Get rid of verbose anonymous class syntax

© 2014 IBM Corporation @’) =




| W N

Lambda Expressions

= Scope
— Anonymous classes introduce their own scopes

— Interplay between names in enclosing scope « inherited
names

= Capture
— Can capture explicitly final outer locals

— And now since 1.8: effectively final locals

= Expressions at the grammar level

— Lambda needs a context that provides target type

© 2014 IBM Corporation @r)y -




BIER Ll

Lambda Expressions: Functional Interface

= Lambda needs a context that provides target type

= Lambda only allowed for functional interfaces

— Interface with a single abstract method

* Default methods don't count, but can be there
» Static methods are not allowed, but can be there
* Methods from Object don't count either

— Optionally annotated with @Functionallnterface

= Lambda object implements a functional interface

© 2014 IBM Corporation @r}




B\ e
JSR-335: Method References

* Very similar to lambda expressions
— Also require a target type
— Target type must be a functional interface
— Serve as instances of the functional interface

— Don't provide a method body, but instead:
refer to an existing method

—void doSort(Integer][] ints) {
Arrays.sort(ints, Integer::compare);

© 2014 IBM Corporation @Jv -




~ NN L
JSR-308: Annotations on Java Types

= But, couldn't we already do this before Java 8?
— void foo(@Foo String s) {}
— No! The annotation was on the declaration (s)
— Same here: @Foo String java17() {}

= So far, only annotations on declarations

— ElementType: packages, classes, fields, methods, ...

= Java 8: annotations on types
— ElementType. TYPE _PARAMETER
— ElementType. TYPE_USE

© 2014 IBM Corporation @J




JSR-308: Annotations on Java Types

= Allows to add constraints to types anywhere in
the code

* Leveraged in Eclipse to improve null analysis

EClI PSS
© 2014 IBM Corporation @')




Behind the Scenes

" The Team
* How did we implement the Java 8 specs?

= Java 8 effort by numbers

EClipSe
T p— &



WY ST

The Team

I I H N e

* T ——

@Andy Clement @Jesper S. Moller @Jay Arthanareeswaran
@Steve Francisco ODéépak Azad
GMi_chael Rennie @Shankha Banerjee
@Olivier Thomann @Anirban Chakarborty
@Curtis Windatt oVikas Chandra

@Stephan Herrmann @Noopur Gupta
@Avushman Jain

@Manju Mathew

+ @Manoj Palat
Ggaltzlﬁlalljle}r @Srikanth Sankaran
@Dav1 1ll1ams p _

@Markus Keller @Sarika Sinha

@Dani Megert

=Cli PSS
T S — &



BIER Ll

Implementing the Specs

= Initially: javac defined/drove specs

= Eclipse must only use spec, but
— Incomplete (April — Sept 2013)

— Inaccurate or undefined in some parts
= We participated in the JSR expert groups

= Users report differences between ECJ and javac
— ECJ? javac bug? JLS bug?

—Who is the master, JLS or javac?

© 2014 IBM Corporation @r}




A NEEERE O L
JDT Does Not Accept Contributions! Really?

= 2012 starts with a JDT team that has 4 core and 4
Ul committers/experts

= Half of the team gone by summer 2012!

= Hard to find new people with compiler know-how
= Backfilled by the end of the year

= BUT: New people had zero knowledge of JDT

= Hard life for existing committers: train new people
and make progress on Java 8

© 2014 IBM Corporation @;




~ . N -
JDT Does Not Accept Contrlbutlons' Really?

* Not much room/energy to review contributions
unrelated to Java 8?

= JDT spent lots of time to review contributions!
= JDT Core: 50 contributions from 20 people
= JDT Ul: 47 contributions from 15 people

© 2014 IBM Corporation @J =




BN\
Java 8 Effort by Numbers

= First commit in May 25, 2012

= 3 big projects tested compiler to build it
JDK 8, OpenJFX and Eclipse SDK

= 31 people contributed code
= 800 bugs/enhancements fixed for Java 8

= 1500+ commits

© 2014 IBM Corporation @’b :




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

