
Eclipse and Java™ 8

Daniel Megert

Platform and JDT Lead

Eclipse PMC Member

IBM Rational Zurich Research Lab



2 © 2014 IBM Corporation

Eclipse and Java™ 8

 New Java language features

 Eclipse features for Java 8

 Behind the scenes



3 © 2014 IBM Corporation

New Java Language Features

 2 JSRs
 JSR-335: Lambda Expressions
 JSR-308: Annotations on Java Types

 2 JEPs
 JEP 118: Method Parameter Reflection
 JEP 120: Repeating Annotations



4 © 2014 IBM Corporation

JSR-335: Two New Type of Methods

 Default methods
– Previous names:

• Defender methods
• Virtual extension methods

 Static interface methods
– No OOP here!

• Method must be qualified with exact interface type



5 © 2014 IBM Corporation

Default Methods

 Intention
– Allow evolution of interfaces (esp. in libraries)
– Methods can be added to interface without API breakage
– Why part of JSR-335?

– Allows to add new methods that take a lambda expression:
java.util.function.Function<T, R>

 Consequences
– Multiple inheritance?

– Yes, but compiler throws error if same method is inherited
– Need to resolve manually with new construct: I.super.m()



6 © 2014 IBM Corporation

JSR-335: Lambda Expressions

 Many names used in the past
– Lambda Expressions, Closures, Anonymous Methods

 Function + “captured state” (can have non-locals)

 Paradigm of passing a "code block as data"

 Get rid of verbose anonymous class syntax



7 © 2014 IBM Corporation

Lambda Expressions

 Scope
– Anonymous classes introduce their own scopes
– Interplay between names in enclosing scope ↔ inherited 

names

 Capture
– Can capture explicitly final outer locals
– And now since 1.8: effectively final locals

 Expressions at the grammar level
– Lambda needs a context that provides target type



8 © 2014 IBM Corporation

Lambda Expressions: Functional Interface

 Lambda needs a context that provides target type

 Lambda only allowed for functional interfaces
– Interface with a single abstract method

• Default methods don't count, but can be there
• Static methods are not allowed, but can be there
• Methods from Object don't count either

– Optionally annotated with @FunctionalInterface

 Lambda object implements a functional interface



9 © 2014 IBM Corporation

JSR-335: Method References

 Very similar to lambda expressions
– Also require a target type
– Target type must be a functional interface
– Serve as instances of the functional interface
– Don't provide a method body, but instead:

refer to an existing method
– void doSort(Integer[] ints) {

Arrays.sort(ints, Integer::compare);
}



10 © 2014 IBM Corporation

JSR-308: Annotations on Java Types

 But, couldn't we already do this before Java 8?
– void foo(@Foo String s) {}
– No! The annotation was on the declaration (s)
– Same here: @Foo String java17() {}

 So far, only annotations on declarations
– ElementType: packages, classes, fields, methods, …

 Java 8: annotations on types
– ElementType.TYPE_PARAMETER
– ElementType.TYPE_USE



11 © 2014 IBM Corporation

JSR-308: Annotations on Java Types

 Allows to add constraints to types anywhere in 
the code

 Leveraged in Eclipse to improve null analysis



12 © 2014 IBM Corporation

Behind the Scenes

 The Team

 How did we implement the Java 8 specs?

 Java 8 effort by numbers



13 © 2014 IBM Corporation

The Team



14 © 2014 IBM Corporation

Implementing the Specs

 Initially: javac defined/drove specs

 Eclipse must only use spec, but
– Incomplete (April – Sept 2013)
– Inaccurate or undefined in some parts

 We participated in the JSR expert groups

 Users report differences between ECJ and javac
– ECJ? javac bug? JLS bug?
– Who is the master, JLS or javac?

 We helped to make the spec more concise!



15 © 2014 IBM Corporation

JDT Does Not Accept Contributions! Really?

 2012 starts with a JDT team that has 4 core and 4 
UI committers/experts

 Half of the team gone by summer 2012!

 Hard to find new people with compiler know-how

 Backfilled by the end of the year

 BUT: New people had zero knowledge of JDT

 Hard life for existing committers: train new people 
and make progress on Java 8



16 © 2014 IBM Corporation

JDT Does Not Accept Contributions! Really?

 Not much room/energy to review contributions 
unrelated to Java 8?

 JDT spent lots of time to review contributions!

 JDT Core: 50 contributions from 20 people

 JDT UI: 47 contributions from 15 people



17 © 2014 IBM Corporation

Java 8 Effort by Numbers

 First commit in May 25, 2012

 3 big projects tested compiler to build it
JDK 8, OpenJFX and Eclipse SDK

 31 people contributed code

 800 bugs/enhancements fixed for Java 8

 1500+ commits


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

