
WP 3.3

© Copyright Xactium, TUBS & TUD 2008 1

How to build a set of DSLs: from
Theory to Practise

Xactium, TUBS, Jendrik Johannes (TUD)
 

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 2

Context of this work

• The present courseware has been developed within the context of the
MODELPLEX European IST FP6 project (http://www.modelplex.org/).
• Co-funded by the European Commission, the MODELPLEX project

involves 21 partners from 8 different countries.
• MODELPLEX aims to define and develop a coherent infrastructure

specifically for the application of MDE to the development and
subsequent management of complex systems within a variety of
industrial domains.
• To achieve the goal of the large-scale adoption of MDE, MODELPLEX

promotes the idea of the collaborative development of courseware
dedicated to this domain.
• The MDE courseware provided here with the status of open-source

software is produced under the EPL 1.0 licence.

http://www.modelplex.org/

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 3

Outline

• Introduction to DSLs
• What are DSLs? (overview, with examples
• Why are they topical? (Discussion of drivers for DSLs)
• Who is using them? (Examples of use)
• What is the business benefit? (The value proposition to

industry)
• Relationship within Modelplex (how they contribute to

Modelplex)
• Existing technologies (Eclipse, MS, etc)  

• Architecture of a DSL
• Core concepts (Define core concepts and terminology)
• Structure of DSLs (Basic building blocks: abstract syntax, etc)
• Measurements of quality (How to determine the quality of the

DSL – may be a section in it own right) 

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 4

Outline Continued

• Building a DSL
• Domain analysis (Understanding the domain that is to be

modelled)
• Building an abstract syntax model (Basic steps in building a

metamodel)
• Understanding syntax (What should the interface to a DSL be?)
• Developing a visual editor (Steps in creating a visual editor)
• Other types of editors (For example textual)
• Semantics (Giving the DSL meaning)
• Modularisation for DSLs (adding modularisation support)

• An example (Take them through a small example using
Eclipse)
• Building a DSL family (Examples of how to facilitate

reusable DSL development)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 5

Building a DSL: Modularisation

• Languages need modularization concepts
• Reduce complexity
• Improve reusability

• Challenges
• Modularization influences syntax and semantics
• Requires additional tooling support

• Reuseware [1][2]

• Does not influence design of DSL syntax or semantics
•DSL syntax can be extended at the end (but does not have to be)

• Composes modularized models to monolithic models
•DSL semantics do not require extension

• Generic tooling can be used with arbitrary DSLs
[1] On Language-Independent Model Modularisation,Transactions on Aspect-Oriented Development, 2008
[2] http://reuseware.org

http://reuseware.org

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 6

Building a DSL: Modularisation with Reuseware

• Reuseware approach
• Define a composition system with modularisation concepts 

(or reuse a predefined one)
• E.g., Modules, Packages, Aspects, etc.

• Optional: Extend DSL syntax with concepts for variation points
• Variation points allow definition of templates

• Define a reuse extension for your DSL
• Binds the composition system to your DSL
• E.g., what are the specifics of a module in your DSL, what

identifies and aspect, etc.

• Reuseware can now handle modularization in your DSL

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 7

Building a DSL: Modularisation – Example

• Taipan DSL[3] (Metamodel excerpt)

[3] http://wiki.eclipse.org/index.php/GMF Tutorial#Quick Start

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 8

Building a DSL: Modularisation – Example

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 9

Building a DSL: Modularisation – Example
Different concerns
should be separated
into model fragments

• Port mode 
(configuration of
ports and routes)  

•Flotilla model 
(ships and their
relations)

•Cargo model  
(Cargo and its
properties)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 10

Building a DSL: Modularisation – Example
Different concerns
should be separated
into model fragments

• Port mode 
(configuration of
ports and routes)  

•Flotilla model 
(ships and their
relations)

•Cargo model  
(Cargo and its
properties)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 11

Building a DSL: Reuseware - Overview

• Model Fragments
• (Partial) models that may contain variation points
• Offer a Composition Interface
• Composition Interface consists of Ports
• Ports point at elements of the model fragment that can be

accessed for composition

• Composition Programs
• Define composition links between Ports
• Can be executed to produce a composed model where model

fragments are merged at the elements pointed out by the
linked Ports

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 12

Building a DSL: Reuseware - Overview

• Composition Systems
• Define modularisation concepts 

(e.g., Modules, Packages, Aspects)
• Define relations between modularisation concepts 

(e.g, an aspect relates to a core)

• Reuse extensions (for DSLs)
• Define how modularization concepts defined in a 

composition system are realized in a concrete DSL
• Define which ports are related to which model elements  

of a model fragment

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 13

Building a DSL: Reuseware - Composition Systems

• A composition system defines
• Fragment roles
• Role a model fragment plays in the modularisation  

(e.g., aspect or core)
• Fragment roles collaborate through associations between ports

• Static ports
• Defined for one fragment role
• Each fragment playing the role has to offer the port

• Dynamic ports
• Defined for one fragment role
• Each fragment playing the role can offer several of these ports

• Contribution Associations
• Defines that two ports are related
• Executing a composition link between the two ports will trigger  

the copying of model elements
• Configuration Associations
• Defines that two ports are related
• Executing a composition link between the two ports will NOT trigger  

the copying of model elements

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 14

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 15

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

A TravelSpace offers a
place where vehicles can be
placed (VehicleContainer)
and a number of Routes and
Places

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 16

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

A Flotilla offers a set of
Vehicles and has a number
of placeloders for routes
(RouteSlots) and places
(PlaceSlots)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 17

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

A Flotilla contributes
Vehicles to a TravelSpace’s
VehicleContainer; a
RouteSlots can be
configured with a Route; a
PlaceSlots can be
configured with a Place

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 18

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

An ItemHolder offers
different ItemSpaces

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 19

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

An ItemContainer contains
and offers Items

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 20

Building a DSL: ReuseTaipan - a Composition System
compositionsystem reuseTaipan {

 fragment role TravelSpace {
 static port VehicleContainer;
 dynamic port Routes;
 dynamic port Places;
 }

 fragment role Flotilla {
 static port Vehicles;
 dynamic port RouteSlots;
 dynamic port PlaceSlots;
 }

 contribution Flotilla.Vehicles --> TravelSpace.VehicleContainer;
 configuration Flotilla.RouteSlots --> TravelSpace.Routes;
 configuration Flotilla.PlaceSlots --> TravelSpace.Places;

 fragment role ItemHolder {
 dynamic port ItemSpaces;
 }

 fragment role ItemContainer {
 dynamic port Items;
 }

 contribution ItemContainer.Items --> ItemHolder.ItemSpaces;
}

Items can be individually
assigned to ItemSpaces

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 21

Building a DSL: Extending a Metamodel for Variation

• Three kinds of variation points required
• RouteSlot
• PortSlot
• ItemSpace

• For each kind of variation point we...
• Introduce a superclass for the metaclass that defines the elements

which may replace the variation point 
(e.g., we introduce RouteType as a superclass of Route in the case of
RouteSlot)
• We redirect all references to the metaclass to the new superclass

(e.g., all references to Route are redirected to RouteType)
• We introduce a new subclass for the just introduced superclass that

represents the variation point. This class needs properties from which
a name can be derived. (e.g., we introduce RouteSlot as a subclass of
RoutType)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 22

Building a DSL: Extending a Metamodel for Variation

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 23

Building a DSL: Extending a Metamodel for Variation

(extension for PortSlot not shown; similar to RouteSlot)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 24

Building a DSL: Reuseware - Reuse Extensions

• A Reuse Extension defines
• How a composition interface define by a fragment role (which is

defined in a composition system) is linked to the content of a
model fragment
• Each port links to a set of model elements treated as:
• Prototype: Element that can be copied with its contained elements
•Anchor: Element that can be referenced by other elements

•Hook: Variation point where Prototypes can be put
• Slot: Variation point where Anchors can be put

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 25

Building a DSL: Binding ReuseTaipan to Taipan DSL
reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

The ReuseTaipan composition
system is bound to the Taipan
DSL (referred to by the URI
of its metamodel)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 26

Building a DSL: Binding ReuseTaipan to Taipan DSL

The references ships, ports
and routes of the metaclass
Aquatory all act as hooks
accessible through the
VehicleContainer port

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 27

Building a DSL: Binding ReuseTaipan to Taipan DSL

VehicleContainer

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 28

Building a DSL: Binding ReuseTaipan to Taipan DSL

Each Route is an anchor
accessible through individual
ports; the ports are named
using the description attribute
of the Route metaclass  
(OCL Expression:
self.description)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 29

Building a DSL: Binding ReuseTaipan to Taipan DSL

Northern Route

Baltic Route

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 30

Building a DSL: Binding ReuseTaipan to Taipan DSL

Each Port is an anchor
accessible through individual
ports; the ports are named
using the location attribute of
the Port metaclass

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 31

Building a DSL: Binding ReuseTaipan to Taipan DSL

StockholmPort

HamburgPort

RostockPort

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 32

Building a DSL: Binding ReuseTaipan to Taipan DSL

All elements of the references
ships, ports and routes of the
metaclass Aquatory act as
prototypes accessible through
the Vehicles port

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 33

Building a DSL: Binding ReuseTaipan to Taipan DSL

Vehicles

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 34

Building a DSL: Binding ReuseTaipan to Taipan DSL

Each RouteSlot is a slot
accessible through individual
ports; the ports are named
using the name attribute of
the RouteSlot metaclass

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 35

Building a DSL: Binding ReuseTaipan to Taipan DSL

ship2Route

ship1Route

WP 3.3

© Copyright Xactium, TUBS & TUD 2008

reuseextension reuseTaipan implements reuseTaipan
epackages <http://www.eclipse.org/examples/gmf/taipan>
Rootclass TravelSpace {
 fragment role TravelSpace {
 port VehicleContainer {
 Aquatory.ships is hook {}
 Aquatory.ports is hook {}
 Aquatory.routes is hook {}
 }
 port Routes {
 Route is anchor {
 port expr = $self.description$
 }
 }
 port Places {
 Port is anchor {
 port expr = $self.location.concat('Port')$
 }
 }
 }

 fragment role Flotilla {
 port Vehicles {
 Aquatory.ships is prototype {}
 Aquatory.ports is prototype {}
 Aquatory.routes is prototype {}
 }
 port RouteSlots {
 RouteSlot is slot {
 port expr = $self.name$
 }
 }
 port PlaceSlots {
 PortSlot is slot {
 port expr = $self.name$

 36

Building a DSL: Binding ReuseTaipan to Taipan DSL

Each PortSlot is a slot
accessible through individual
ports; the ports are named
using the name attribute of
the RouteSlot metaclass

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 37

Building a DSL: Binding ReuseTaipan to Taipan DSL

ship2Port

ship1Port

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 38

Building a DSL: Binding ReuseTaipan to Taipan DSL

 ...

 binding ItemHolder {
 binding ItemSpaces {
 ItemSpace is hook {
 port expr = $self.name$
 }
 }
 }

 binding ItemContainer {
 binding Items {
 Item is prototype {
 port expr = $self.article$
 }
 }
 }
}

Each ItemSpace is a hook
accessible through individual
ports; the ports are named
using the name attribute of
the ItemSpace metaclass

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 39

Building a DSL: Binding ReuseTaipan to Taipan DSL

Ship2Cargo

Ship1Cargo

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 40

Building a DSL: Binding ReuseTaipan to Taipan DSL

 ...

 fragment role ItemHolder {
 port ItemSpaces {
 ItemSpace is hook {
 port expr = $self.name$
 }
 }
 }

 fragment role ItemContainer {
 port Items {
 Item is prototype {
 port expr = $self.article$
 }
 }
 }
}

Each Item is a prototype
accessible through individual
ports; the ports are named
using the article attribute of
the Items metaclass

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 41

Building a DSL: Binding ReuseTaipan to Taipan DSL

tobacco coffee guns

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 42

Building a DSL: Using Reuseware Tooling with a DSL

• Fragment Repository
• Light-weight repository to manage and find reusable model

fragments
• Can instantly be used to build libraries of model fragments

designed in a DSL

• Composition Program Editor
• Independent of composition systems and reuse extensions
• Can instantly be used to define compositions for the DSL
• Layout can be customized if desired

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 43

Building a DSL: Using Reuseware Tooling with a DSL

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 44

Building a DSL: Using Reuseware Tooling with a DSL

The fragment repository
shows model fragments, the
fragment roles they can play
and the details of the
corresponding composition
interfaces

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 45

Building a DSL: Using Reuseware Tooling with a DSL

Fragments are added to a composition
program; for each fragment one can define
which fragment roles it should play in the
composition program
(e.g., myFlotilla is both Flottila and
ItemHolder)

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 46

Building a DSL: Using Reuseware Tooling with a DSL

Compositon links define the composition;
Reuseware can execute the compositon
program and produce an integrated taipan
model

WP 3.3

© Copyright Xactium, TUBS & TUD 2008 47

Building a DSL: Using Reuseware Tooling with a DSL

