
June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!1

Transforming models with ATL 

The ATLAS Transformation Language 

Frédéric Jouault 

ATLAS group (INRIA & LINA), University of Nantes, France 
http://www.sciences.univ-nantes.fr/lina/atl/ 

http://www.univ-nantes.fr/index.jsp


June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!2

Context of this work

• The present courseware has been elaborated in the context of the 
MODELWARE European  IST FP6 project (http://www.modelware-
ist.org/). 

• Co-funded by the European Commission, the MODELWARE project 
involves 19 partners from 8 European countries. MODELWARE 
aims to improve software productivity by capitalizing on techniques 
known as Model-Driven Development (MDD). 

• To achieve the goal of large-scale adoption of these MDD 
techniques, MODELWARE promotes the idea of a collaborative 
development of courseware dedicated to this domain.  

• The MDD courseware provided here with the status of open 
source software is produced under the EPL 1.0 license. 

http://www.univ-nantes.fr/index.jsp
http://www.modelware-ist.org/bb2Forum/index.php
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Prerequisites

To be able to understand this lecture, a reader should be 
familiar with the following concepts, languages, and 
standards: 

• Model Driven Engineering (MDE) 
• The role of model transformations in MDE 
• UML 
• OCL 
• MOF 
• Basic programming concepts

http://www.univ-nantes.fr/index.jsp
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Definitions

• A model transformation is the automatic creation of 
target models from source models. 

• Model transformation is not only about M1 to M1 
transformations: 
• M1 to M2: promotion, 
• M2 to M1: demotion, 
• M3 to M1, M3 to M2, etc.

Metametamodel
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Operational context of ATL

MOF
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MMB is the 
target 
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ATL overview

• Source models and target models are distinct: 
• Source models are read-only (they can only be navigated, not 

modified), 
• Target models are write-only (they cannot be navigated). 

• The language is a declarative-imperative hybrid: 
• Declarative part: 
•Matched rules with automatic traceability support, 
• Side-effect free navigation (and query) language: OCL 2.0 

• Imperative part: 
• Called rules, 
•Action blocks. 

• Recommended programming style: declarative

http://www.univ-nantes.fr/index.jsp
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ATL overview (continued)

• A declarative rule specifies: 
• a source pattern to be matched in the source models, 
• a target pattern to be created in the target models for each 

match during rule application. 

• An imperative rule is basically a procedure: 
• It is called by its name, 
• It may take arguments, 
• It can contain: 
•A declarative target pattern, 
•An action block (i.e. a sequence of statements), 
• Both.

http://www.univ-nantes.fr/index.jsp
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ATL overview (continued)

• Applying a declarative rule means: 
• Creating the specified target elements, 
• Initializing the properties of the newly created elements. 

• There are three types of declarative rules: 
• Standard rules that are applied once for each match, 
•A given set of elements may only be matched by one standard rule, 

• Lazy rules that are applied as many times for each match as it 
is referred to from other rules (possibly never for some 
matches), 
• Unique lazy rules that are applied at most once for each match 

and only if it is referred to from other rules.

http://www.univ-nantes.fr/index.jsp


June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!13

Declarative rules: source pattern

•The source pattern is composed of: 
•A labeled set of types coming from the source 

metamodels, 
•A guard (Boolean expression) used to filter matches. 

•A match corresponds to a set of elements 
coming from the source models that: 
•Are of the types specified in the source pattern (one 

element for each type), 
•Satisfy the guard.

http://www.univ-nantes.fr/index.jsp


June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!14

Declarative rules: target pattern

•The target pattern is composed of: 
•A labeled set of types coming from the target 

metamodels, 
•For each element of this set, a set of bindings. 
•A binding specifies the initialization of a property of 

a target element using an expression. 

•For each match, the target pattern is applied: 
•Elements are created in the target models (one for 

each type of the target pattern), 
•Target elements are initialized by executing the 

bindings: 
•First evaluating their value, 
•Then assigning this value to the corresponding property.

http://www.univ-nantes.fr/index.jsp
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Execution order of declarative rules

• Declarative ATL frees the developer from specifying 
execution order: 
• The order in which rules are matched and applied is not 

specified. 
•Remark: the match of a lazy or unique lazy rules must be referred 

to before the rule is applied. 
• The order in which bindings are applied is not specified. 

• The execution of declarative rules can however be 
kept deterministic: 
• The execution of a rule cannot change source models 

➔ It cannot change a match, 
• Target elements are not navigable 

➔ The execution of a binding cannot change the value of another.

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, overview

• The source metamodel Class is a simplification of class 
diagrams. 

• The target metamodel Relational is a simplification of the 
relational model. 

➔ ATL declaration of the transformation: 
module Class2Relational; 
create Mout : Relational from Min : Class; 

• The transformation excerpts used in this presentation 
come from: 

http://www.eclipse.org/gmt/atl/atlTransformations/#Class2Relational

http://www.univ-nantes.fr/index.jsp
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Source: the Class metamodel

NamedElt

+name:String

Classifier

Attribute

+multivalued:Boolean

type+

DataType Class attr+

*
{ordered}

owner
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package Class { 

 abstract class NamedElt { 
  attribute name : String; 
 } 

 abstract class Classifier extends NamedElt {} 

 class DataType extends Classifier {} 

 class Class extends Classifier { 
  reference attr[*] ordered container : Attribute oppositeOf owner; 
 } 

 class Attribute extends NamedElt { 
  attribute multiValued : Boolean; 
  reference type : Classifier; 
  reference owner : Class oppositeOf attr; 
 } 
} 
 *For more information on KM3 see http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/ 

The Class Metamodel in KM3*
NamedElt

+name: String

Classifier

Attribute

+multivalued :Boolean

type+

DataType Class attr+

*
{ ordered }

owner

http://www.univ-nantes.fr/index.jsp


June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!20

The Relational Metamodel

 

Named 
+  name  :  String  

Table  Column  

owner  +  

col  +  

*  
{  ordered  }  

keyOf  +  0..1  key  +  *  

Type  *  type  +  

http://www.univ-nantes.fr/index.jsp
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package Relational { 

 abstract class Named { 
  attribute name : String; 
 } 

 class Table extends Named { 
  reference col[*] ordered container : Column oppositeOf owner; 
  reference key[*] : Column oppositeOf keyOf; 
 } 

 class Column extends Named { 
  reference owner : Table oppositeOf col;    
 reference keyOf[0-1] : Table oppositeOf key; 
  reference type : Type; 
 } 

 class Type extends Named {} 
}

The Relational Metamodel in KM3

 

Named  
+  name  :  String  

Table  Column  

owner  +  

col  +  

*  
{  ordered  }  

keyOf  +  0..1  key  +  *  

Type  *  type  +  
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Example: Class to Relational, overview

• Informal description of rules 
• Class2Table: 
•A table is created from each class, 
• The columns of the table correspond to the single-valued 

attributes of the class, 
•A column corresponding to the key of the table is created. 

• SingleValuedAttribute2Column: 
•A column is created from each single-valued attribute. 

• MultiValuedAttribute2Column: 
•A table with two columns is created from each multi-valued 

attribute, 
•One column refers to the key of the table created from the owner 

class of the attribute, 
• The second column contains the value of the attribute.

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule Class2Table

• A Table is created for each Class: 

rule Class2Table { 
 from    -- source pattern 
  c : Class!Class 
 to     -- target pattern 
  t : Relational!Table 
}

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule Class2Table

• The name of the Table is the name of the Class: 

rule Class2Table { 
 from 
  c : Class!Class 
 to 
  t : Relational!Table ( 
   name <- c.name -- a simple binding 
  ) 
}

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule Class2Table

• The columns of the table correspond to the single-valued attributes 
of the class: 

rule Class2Table { 
 from 
  c : Class!Class 
 to 
  t : Relational!Table ( 
   name <- c.name, 
   col <- c.attr->select(e |  -- a binding 
     not e.multiValued -- using   

 )   -- complex navigation 
  ) 
} 
• Remark: attributes are automatically resolved into columns by 

automatic traceability support.

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule Class2Table

• Each Table owns a key containing a unique identifier: 

 rule Class2Table { 
  from 
   c : Class!Class 
  to 
   t : Relational!Table ( 
    name <- c.name, 
    col <- c.attr->select(e | 
      not e.multiValued 
     )->union(Sequence {key}), 
    key <- Set {key} 
   ), 
   key : Relational!Column ( -- another target 
    name <- ‘Id’  -- pattern element 
   )    -- for the key 
 }

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule SingleValuedAttribute2Column

• A Column is created for each single-valued Attribute: 

rule SingleValuedAttribute2Column { 
 from -- the guard is used for selection 
  a : Class!Attribute (not a.multiValued) 
 to 
  c : Relational!Column ( 
   name <- a.name 
  ) 
}

http://www.univ-nantes.fr/index.jsp
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Example: Class to Relational, rule MultiValuedAttribute2Column

• A Table is created for each multi-valued Attribute, which contains two columns: 
• The identifier of the table created from the class owner of the Attribute 
• The value. 

  rule MultiValuedAttribute2Column { 
   from 
    a : Class!Attribute (a.multiValued) 
   to 
    t : Relational!Table ( 
     name <- a.owner.name + ‘_’ + a.name, 
     col <- Sequence {id, value} 
    ), 
    id : Relational!Column ( 
     name <- ‘Id’ 
    ), 
    value : Relational!Column ( 
     name <- a.name 
    ) 
  }

http://www.univ-nantes.fr/index.jsp
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Other ATL features: rule inheritance

• Rule inheritance, to help structure transformations 
and reuse rules and patterns: 
• A child rule matches a subset of what its parent rule matches, 

➔ All the bindings of the parent still make sense for the child, 
• A child rule specializes target elements of its parent rule: 
• Initialization of existing elements may be improved or changed, 
•New elements may be created, 

• Syntax: 
abstract rule R1 { 
 -- ... 
} 
rule R2 extends R1 { 
 -- ... 
}

http://www.univ-nantes.fr/index.jsp
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Other ATL features: refining mode

• Refining mode for transformations that need to modify only a small 
part of a model: 
• Since source models are read-only target models must be created from 

scratch, 
• This can be done by writing copy rules for each elements that are not 

transformed, 
➔ This is not very elegant, 

• In refining mode, the ATL engine automatically copies unmatched elements. 

• The developer only specifies what changes. 

• ATL semantics is respected: source models are still read-only. 
➔ An (optimized) engine may modify source models in-place but only commit 

the changes in the end. 

• Syntax: replace from by refining 
module A2A; create OUT : MMA refining IN : MMA;

http://www.univ-nantes.fr/index.jsp
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ATL in use

• ATL has been used in a large number of application 
domains. 

• A library of transformations is available at 
 http://www.eclipse.org/gmt/atl/atlTransformations/ 
• More than 40 scenarios, 
• More than 100 single transformations. 

• About 100 sites use ATL for various purpose: 
• Teaching, 
• Research, 
• Industrial development, 
• Etc.

http://www.univ-nantes.fr/index.jsp
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ATL in use

• ATL tools and documentation are available at 
 http://www.eclipse.org/gmt/atl/ 
• Execution engine: 
• Virtual machine, 
•ATL to bytecode compiler, 

• Integrated Development Environment (IDE) for: 
• Editor with syntax highlighting and outline, 
• Execution support with launch configurations, 
• Source-level debugger. 

• Documentation: 
• Starter’s guide, 
•User manual, 
• Installation guide, 
• Etc.

http://www.univ-nantes.fr/index.jsp
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ATL Development Tools: perspective, editor and outline

http://www.univ-nantes.fr/index.jsp
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ATL Development Tools: launch configuration

http://www.univ-nantes.fr/index.jsp
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ATL Development Tools: source-level debugger

http://www.univ-nantes.fr/index.jsp
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Conclusion

• ATL has a simple declarative syntax: 
➔ Simple problems are generally solved simply. 

• ATL supports advanced features: 
• Complex OCL navigation, lazy rules, refining mode, rule 

inheritance, etc. 
➔ Many complex problems can be handled declaratively. 

• ATL has an imperative part: 
➔ Any problem can be handled.

http://www.univ-nantes.fr/index.jsp
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End of the presentation

!Thanks 
!Questions? 
!Comments?

AMMA@lina.univ-nantes.fr 
ATLAS group, INRIA & LINA, Nantes
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