
June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!1

Transforming models with ATL

The ATLAS Transformation Language

Frédéric Jouault

ATLAS group (INRIA & LINA), University of Nantes, France
http://www.sciences.univ-nantes.fr/lina/atl/ 

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.univ-nantes.fr/index.jsp
http://www.modelware-ist.org/bb2Forum/index.php

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!3

Prerequisites

To be able to understand this lecture, a reader should be
familiar with the following concepts, languages, and
standards:

• Model Driven Engineering (MDE)
• The role of model transformations in MDE
• UML
• OCL
• MOF
• Basic programming concepts

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!4

Contents

• Introduction

• Description of ATL

• Example: Class to Relational

• Additional considerations

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!5

Contents

• Introduction
• Definitions
• Operational context

• Description of ATL

• Example: Class to Relational

• Additional considerations

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!6

Definitions

• A model transformation is the automatic creation of
target models from source models.

• Model transformation is not only about M1 to M1
transformations:
• M1 to M2: promotion,
• M2 to M1: demotion,
• M3 to M1, M3 to M2, etc.

Metametamodel

Metamodel

Terminal
Model

M3

M2

M1

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!7

G 2 P
Rule

R 2 B
Rule

Operational context: small theory

Ma Mb

MMa
Green
Class

Red
Class

MMb
Blue
Class

Pink
Class

Metametamodel

Class
Class

ATL
Rule
Class

MMa2MMb.atl

conformsTo conformsTo

conformsTo conformsTo

conformsTo

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!8

Operational context of ATL

MOF

MMa MMb

Ma Mb
MMa2MMb.atl

ATL

MMa is the
source
metamodel

Ma is the source model Mb is the target model

MMB is the
target
metamodel

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!9

Contents

• Introduction

• Description of ATL
• Overview
• Source pattern
• Target pattern
• Execution order

• Example: Class to Relational

• Additional considerations

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!10

ATL overview

• Source models and target models are distinct:
• Source models are read-only (they can only be navigated, not

modified),
• Target models are write-only (they cannot be navigated).

• The language is a declarative-imperative hybrid:
• Declarative part:
•Matched rules with automatic traceability support,
• Side-effect free navigation (and query) language: OCL 2.0

• Imperative part:
• Called rules,
•Action blocks.

• Recommended programming style: declarative

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!11

ATL overview (continued)

• A declarative rule specifies:
• a source pattern to be matched in the source models,
• a target pattern to be created in the target models for each

match during rule application.

• An imperative rule is basically a procedure:
• It is called by its name,
• It may take arguments,
• It can contain:
•A declarative target pattern,
•An action block (i.e. a sequence of statements),
• Both.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!12

ATL overview (continued)

• Applying a declarative rule means:
• Creating the specified target elements,
• Initializing the properties of the newly created elements.

• There are three types of declarative rules:
• Standard rules that are applied once for each match,
•A given set of elements may only be matched by one standard rule,

• Lazy rules that are applied as many times for each match as it
is referred to from other rules (possibly never for some
matches),
• Unique lazy rules that are applied at most once for each match

and only if it is referred to from other rules.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!13

Declarative rules: source pattern

•The source pattern is composed of:
•A labeled set of types coming from the source

metamodels,
•A guard (Boolean expression) used to filter matches.

•A match corresponds to a set of elements
coming from the source models that:
•Are of the types specified in the source pattern (one

element for each type),
•Satisfy the guard.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!14

Declarative rules: target pattern

•The target pattern is composed of:
•A labeled set of types coming from the target

metamodels,
•For each element of this set, a set of bindings.
•A binding specifies the initialization of a property of

a target element using an expression.

•For each match, the target pattern is applied:
•Elements are created in the target models (one for

each type of the target pattern),
•Target elements are initialized by executing the

bindings:
•First evaluating their value,
•Then assigning this value to the corresponding property.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!15

Execution order of declarative rules

• Declarative ATL frees the developer from specifying
execution order:
• The order in which rules are matched and applied is not

specified.
•Remark: the match of a lazy or unique lazy rules must be referred

to before the rule is applied.
• The order in which bindings are applied is not specified.

• The execution of declarative rules can however be
kept deterministic:
• The execution of a rule cannot change source models

➔ It cannot change a match,
• Target elements are not navigable

➔ The execution of a binding cannot change the value of another.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!16

Contents

• Introduction

• Description of ATL

• Example: Class to Relational
• Overview
• Source metamodel
• Target metamodel
• Rule Class2Table
• Rule SingleValuedAttribute2Column
• Rule MultiValuedAttribute2Column

• Additional considerations

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!17

Example: Class to Relational, overview

• The source metamodel Class is a simplification of class
diagrams.

• The target metamodel Relational is a simplification of the
relational model.

➔ ATL declaration of the transformation:
module Class2Relational;
create Mout : Relational from Min : Class;

• The transformation excerpts used in this presentation
come from:

http://www.eclipse.org/gmt/atl/atlTransformations/#Class2Relational

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!18

Source: the Class metamodel

NamedElt

+name:String

Classifier

Attribute

+multivalued:Boolean

type+

DataType Class attr+

*
{ordered}

owner

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!19

package Class {

 abstract class NamedElt {
 attribute name : String;
 }

 abstract class Classifier extends NamedElt {}

 class DataType extends Classifier {}

 class Class extends Classifier {
 reference attr[*] ordered container : Attribute oppositeOf owner;
 }

 class Attribute extends NamedElt {
 attribute multiValued : Boolean;
 reference type : Classifier;
 reference owner : Class oppositeOf attr;
 }
}
 *For more information on KM3 see http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

The Class Metamodel in KM3*
NamedElt

+name: String

Classifier

Attribute

+multivalued :Boolean

type+

DataType Class attr+

*
{ ordered }

owner

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!20

The Relational Metamodel

Named
+ name : String

Table Column

owner +

col +

*
{ ordered }

keyOf + 0..1 key + *

Type * type +

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!21

package Relational {

 abstract class Named {
 attribute name : String;
 }

 class Table extends Named {
 reference col[*] ordered container : Column oppositeOf owner;
 reference key[*] : Column oppositeOf keyOf;
 }

 class Column extends Named {
 reference owner : Table oppositeOf col;
 reference keyOf[0-1] : Table oppositeOf key;
 reference type : Type;
 }

 class Type extends Named {}
}

The Relational Metamodel in KM3

Named
+ name : String

Table Column

owner +

col +

*
{ ordered }

keyOf + 0..1 key + *

Type * type +

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!22

Example: Class to Relational, overview

• Informal description of rules
• Class2Table:
•A table is created from each class,
• The columns of the table correspond to the single-valued

attributes of the class,
•A column corresponding to the key of the table is created.

• SingleValuedAttribute2Column:
•A column is created from each single-valued attribute.

• MultiValuedAttribute2Column:
•A table with two columns is created from each multi-valued

attribute,
•One column refers to the key of the table created from the owner

class of the attribute,
• The second column contains the value of the attribute.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!23

Example: Class to Relational, rule Class2Table

• A Table is created for each Class:

rule Class2Table {
 from -- source pattern
 c : Class!Class
 to -- target pattern
 t : Relational!Table
}

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!24

Example: Class to Relational, rule Class2Table

• The name of the Table is the name of the Class:

rule Class2Table {
 from
 c : Class!Class
 to
 t : Relational!Table (
 name <- c.name -- a simple binding
)
}

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!25

Example: Class to Relational, rule Class2Table

• The columns of the table correspond to the single-valued attributes
of the class:

rule Class2Table {
 from
 c : Class!Class
 to
 t : Relational!Table (
 name <- c.name,
 col <- c.attr->select(e | -- a binding
 not e.multiValued -- using

) -- complex navigation
)
}
• Remark: attributes are automatically resolved into columns by

automatic traceability support.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!26

Example: Class to Relational, rule Class2Table

• Each Table owns a key containing a unique identifier:

 rule Class2Table {
 from
 c : Class!Class
 to
 t : Relational!Table (
 name <- c.name,
 col <- c.attr->select(e |
 not e.multiValued
)->union(Sequence {key}),
 key <- Set {key}
),
 key : Relational!Column (-- another target
 name <- ‘Id’ -- pattern element
) -- for the key
 }

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!27

Example: Class to Relational, rule SingleValuedAttribute2Column

• A Column is created for each single-valued Attribute:

rule SingleValuedAttribute2Column {
 from -- the guard is used for selection
 a : Class!Attribute (not a.multiValued)
 to
 c : Relational!Column (
 name <- a.name
)
}

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!28

Example: Class to Relational, rule MultiValuedAttribute2Column

• A Table is created for each multi-valued Attribute, which contains two columns:
• The identifier of the table created from the class owner of the Attribute
• The value.

 rule MultiValuedAttribute2Column {
 from
 a : Class!Attribute (a.multiValued)
 to
 t : Relational!Table (
 name <- a.owner.name + ‘_’ + a.name,
 col <- Sequence {id, value}
),
 id : Relational!Column (
 name <- ‘Id’
),
 value : Relational!Column (
 name <- a.name
)
 }

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!29

Contents

• Introduction

• Description of ATL

• Example: Class to Relational

• Additional considerations
• Other ATL features
• ATL in use

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!30

Other ATL features: rule inheritance

• Rule inheritance, to help structure transformations
and reuse rules and patterns:
• A child rule matches a subset of what its parent rule matches,

➔ All the bindings of the parent still make sense for the child,
• A child rule specializes target elements of its parent rule:
• Initialization of existing elements may be improved or changed,
•New elements may be created,

• Syntax:
abstract rule R1 {
 -- ...
}
rule R2 extends R1 {
 -- ...
}

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!31

Other ATL features: refining mode

• Refining mode for transformations that need to modify only a small
part of a model:
• Since source models are read-only target models must be created from

scratch,
• This can be done by writing copy rules for each elements that are not

transformed,
➔ This is not very elegant,

• In refining mode, the ATL engine automatically copies unmatched elements.

• The developer only specifies what changes.

• ATL semantics is respected: source models are still read-only.
➔ An (optimized) engine may modify source models in-place but only commit

the changes in the end.

• Syntax: replace from by refining
module A2A; create OUT : MMA refining IN : MMA;

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!32

ATL in use

• ATL has been used in a large number of application
domains.

• A library of transformations is available at
 http://www.eclipse.org/gmt/atl/atlTransformations/
• More than 40 scenarios,
• More than 100 single transformations.

• About 100 sites use ATL for various purpose:
• Teaching,
• Research,
• Industrial development,
• Etc.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!33

ATL in use

• ATL tools and documentation are available at
 http://www.eclipse.org/gmt/atl/
• Execution engine:
• Virtual machine,
•ATL to bytecode compiler,

• Integrated Development Environment (IDE) for:
• Editor with syntax highlighting and outline,
• Execution support with launch configurations,
• Source-level debugger.

• Documentation:
• Starter’s guide,
•User manual,
• Installation guide,
• Etc.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!34

ATL Development Tools: perspective, editor and outline

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!35

ATL Development Tools: launch configuration

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!36

ATL Development Tools: source-level debugger

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!37

Contents

• Introduction

• Description of ATL

• Example: Class to Relational

• Additional considerations

• Conclusion

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!38

Conclusion

• ATL has a simple declarative syntax:
➔ Simple problems are generally solved simply.

• ATL supports advanced features:
• Complex OCL navigation, lazy rules, refining mode, rule

inheritance, etc.
➔ Many complex problems can be handled declaratively.

• ATL has an imperative part:
➔ Any problem can be handled.

http://www.univ-nantes.fr/index.jsp

June 9, 2006

Transforming models with ATL

© 2006 ATLAS Nantes!39

End of the presentation

!Thanks
!Questions?
!Comments?

AMMA@lina.univ-nantes.fr
ATLAS group, INRIA & LINA, Nantes

http://www.univ-nantes.fr/index.jsp

