
Eclipse technology in IFMS

Interface Management System

Eclipse Finance Day 2013

Marc Schlienger

A story today about Eclipse and IFMS

SOA at Credit Suisse

The construction of a System

MDD in the large

Leveraging assets for Modernization

Outlook

SOA at Credit Suisse

Introduced for three major reasons

ɋdistributed computing (using CORBA technology)

ɋstandardize how services are documented and reviewed

ɋcentralize service documentation, foster re-use

Overcome ongoing Challenges

ɋPeople come and go, know-how gets lost

ɋApplication Landscape is aging

ɋTechnology diversifies

ɋManage complexity

Decomposition into Components

IT landscape decomposed into
business domains

These coarse-grained
components are (de)coupled
through services

Services expose a business view

Services and Interfaces

Service exposed

over an interface

 Consumer Provider

IFMS makes SOA scale

Interface Management System = central Service Repository

Service and Data Type Catalog

Service Contracts, Dependencies, Reviews

Lifecycle Management

Governance Enforcer

Code Generator

> 3ȳ000 services in IFMS

> 7ȳ000 operations in IFMS

3 Perspectives on IFMS

Construction Scaling Factors Modernization

Simplified Architecture

DB

Operation

Data
Type

Service

Domain Model

Persistence

Layer

Code

Generator

Appl. Logic

models

UI

Import/Export

ModelHub
UML

models

Code &
more

Construction ȯ the Data Layer

Domain Modeling with EMF/ecore model

Generate scaffolding for model-to-model transformation between

Persistence Layer and EMF model

XMI serialization for transferring model data

ɋInterface to Import/Export and Code Generator

ɋUsed for troubleshooting

 Operation

Data

Type

Service

Domain Model

Construction ȯ Code Generator

Code Generator part of Service Repository (centrally managed)

Based on IFMS service models, generates:

ɋPL/1

ɋCORBA IDL

ɋWSDL&XSDs

ɋJava code

Built on oaw (xtend, xpand, check, mwe)

ɋExpress model validation consicely: check

ɋM2M functional transformation language: xtend

ɋM2T polymorphic template engine: xpand

ɋReusing Abstract Syntax Tree and Java code serialization from Eclipse

JDT

Construction ȯ Import/Export and ModelHub

Import/Export of model data expressed in terms of the domain model

ɋBuilt using EMF Compare

ModelHub for transforming from and to UML models

ɋXtend and ATL based transformations

ɋSupports for RSM and Enterprise Architect XMI dialects

Scaling ȯ Quality and Stability

Special needs for testing Code Generator

Create test data (Builder Pattern on top of EMF

model)

Execute test

ɋNormalize generated artifacts (remove differences

due to moment of execution)

Verify results

ɋNormal JUnit asserts

ɋFile comparisons

ɋSource code compilation

Check model coverage

ɋAnnotations

ɋEquivalence class matrix

Scaling ȯ Performance

Large user base (ca 400 in 2013)

Generator started 2ȳ600 times in 2013 (up to 150 per day)

Limitations of oaw (xtend 1)

ɋSlow, Java interpreted

ɋNeeds huge stack

M2M vs M2T

ɋFlexibility vs Readability

ɋFine vs Coarse granular objects

1
ÅGenerator in separate Server/JVM

ÅGenerator as a Service

2 ÅMigrate to xtend 2

Modernization

Leveraging existing assets

IFMS central in CORBA to WebService migration

Import existing CORBA IDLs

Generate diff models describing IDL vs WSDL

ɋLeveraged for automatic testing

Xtext based IDL Parser

ɋSimplifies parser writing

ɋEMF based models

Groovy for intermediate transformations

ɋConcise and elegant syntax

ɋMind the troubles when searching for errors

IDL

IFMS

WSDL

?

