
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

© itemis AG
! !

Eclipse Scout User Day 2014, Ludwigsburg, 27.10.2014

Migration of a large Oracle Forms application to
Scout Karsten Thoms, itemis AG

https://www.flickr.com/photos/kalleboo/2470243807

System „Logitrack“
- Developed from 2004 on
- 50 man years effort
- Developers had strong Oracle / PL/SQL Know How
- ERP System for Logistics branch covering Air-, Ocean-, Road Logistics

System Metrics
- 22 Modules
- 1300 Tables / Views
- 1150 Forms
-

https://www.flickr.com/photos/duncan/121790568

Rhenus fusioned with company that developed Logitrack
IT Landscape Consolidation
Oracle Forms drop from technology stack
- Forms still supported, but not actively developed further
- Designer is dead, last version with Oracle 10
- Java Know-How is easier to get than PL/SQL
Build a common DEVELOPMENT ENVIRONMENT

Migration Approaches

Manual Migration

Standard Tools

Model Based

Manuelle Migration
Vorteil:
• Potential zur Restrukturierung
Nachteile:
• Parallele Entwicklung von Alt- und Neusystem
• Zeit-, Personal- und Kostenintensiv
• Homogenität des Zielsystems schwer sicherzustellen
• Konsistenz zum Altsystem schwer nachweisbar

Standard Werkzeug
Vorteile:
• Fertiges Werkzeug
• Zeitersparnis
• Ggf. Kostenersparnis
Nachteile:
• Werkzeug und Zielarchitektur nicht anpassbar
• Weiterentwicklung sehr aufwendig/nicht möglich
• Abhängigkeit vom Werkzeughersteller

4 321

1) Legacy System analyzed
2) Automated extraction of Metadata from Legacy System
3) Build Reference Application
4) Derive Code Generator

How we opted
for Scout

Initial prototype targeted plain RAP with Spring and custom application framework
Scout seamed to fit, but no concrete experience available => Risk
POC: Replace Client layer by Scout
Good match for desired target architecture
Took a longer time until we got a final decision to go with Scout

A typical mask in the Logitrack application
~30% of the forms have such a simple structure

One of the most complex mask
~250 fields
12 Tab Pages
Master-Detail with tables (react on master table row selection)

Transformation Process

DB

As Input we have the Database and XML exported from Oracle Forms
From this textual DSL models (based on Xtext) are generated (using Xtend)
The DSL models are translated to application code via code generation

Transformation Process

DB

An example of an Oracle Forms XML export
These files are preprocessed in a first step to reduce the amount of data. This can reduce in best case to 10% of the original file length

Transformation Process

DB

Examples of textual DSL models
These models are generated once during the migration phase
Further development happens in these DSL formats

Transformation Process

DB

Forms XML
100 (10%)
101 kLOC

Database
1300 Tables/Views

Frontend DSL
360 Files
21 kLOC

Business DSL
1300 Files
65 kLOC

JAVA
6900 Files
820 kLOC

PL/SQL
830 Files
22 kLOC

Some metrics we have right now
Currently we use ~10% of the forms as source for an integration build
For the database it is planned to reduce the visible scope of the 1300 tables/views behind an API schema, which contains only the relevant part for the application

Generated Artifacts

~40 different artifact types are generated from the DSL models
The initial application structure is scaffolded with a Maven archetype

https://www.flickr.com/photos/booleansplit/12329159165/

No 100% Generation
Generation Gap Pattern
@Replace, @InjectTo
Framework Development
PLSQL code is dumped to files for manual translation
It does not pay off to try to translate PLSQL code for a single project

Demo Time

Demo:
- Development Environment
- Generating DSL models
- Generating application code
- Show running application

Lessons Learned

Issues:
- Layout
Using the code generator it was easy to migrate from Scout 3.9 to 4.0
Especially our Multi Column Content Assist broke. We had a custom solution, but with Scout 4 this is supported more direct by the framework
The simple forms can be generated to 100%
Using code generation we are flexible to start the migration process before all issues are solved. Initially the developers concentrate on migrating the form structure and UI logic, which can be done already now
PLSQL developers were able to produce a working application without seeing any Java code in the first training week

Outlook

Migration phase starts now
Major manual development issues:
- Search component
- Integration of stored procedures
Major parts we have to solve in the tooling/framework:
- Lazy loading of tab page content
- Limit table content
- Modularization

Questions ?

Thank you for your attention

