<¢! DEVZUZ

Eclipse Kepler




<o What are the aims of Kepler
o Defining a collaboration model
o Project facet extensions

o Version facet extensions

o How is the model defined?

o Model adaptors

o Next steps

¢

DEVZUZ




<¢! DEVZUZ

what are the aims of
Eclipse Kepler




what are the aims of Kepler
P

w To build the concept of a community or
collaboration model

o To service a loosely coupled collaboration
approach

o To integrate common collaboration technologies’
artifact repositories
Issue tracking
build servers
instant message solutions (IRC/IM)
mailing lists

<&/ DEvZuz



what are the aims of Kel//

o To develop in a open, transparent fashion at the
Eclipse Software Foundation

o To leverage other Eclipse projects
* Building/Assembly through Buckminster
* |ssue tracking through Mylyn
e Source Control Management integration Eclipse SCM
* On-line collaboration through Corona
 ECF for communication protocols

o To bring new technologies into Eclipse (Maven)

P ‘:f DEvZuz



what are the aims of Kepler
P

o Kepler should:
* Gather information for collaboration
* Adapt to existing sources of meta-data

* Provide links out to existing tooling to work with
collaboration technologies (Issue tracking etc)

Provide a format for searching and finding projects
Provide collaboration tooling integration where is it
missing

- Mailing lists, Forums etc

<&/ DEvZuz



(0"

DEVZUZ

defining a collaboration
model




defining a collaboration model
I

o We need very basic concepts to start
collaboration
 What is a project?
* What is a version?
* Does the project have dependencies?
* What artifact(s) does a project produce that can be
used?
o Beyond this core of information projects can vary
wildly in there content

<&/ DEvZuz



defining a collaboration model

< How does this information help?
It provides the basis to identify a project

It understands the concept of slow moving
dimensions on collaboration (time, releases, versions)

It accepts that there is a product that can be
consumed from the project

It can be created from a number of sources
It is not specific to any build tool or language

P ‘:" DEvZuz



defining a collaboration model

E ProjectType
O id

O description

E http:/{ forgfeclips...

N

versiuLl E Yersion
a.- O id
artifact o=

i hitp: /¢ jorgieclipse/emf/e...

_ T
" T

=

E Artifact ) E Dependency

dependency

0= hitp:/ { jorg/eclipse/emf/... Wi hitp:// jorg/eclipse/emf/eco...

o.=

<&/ DEvZuz



defining a collaboration /mod,/

o Extending the collaboration model
* The Core model provides the basis for extension

* Extensions are provided at three places:
- ProjectFacet - 0 or more project facets

- VersionFacet - 0 or more version facets
- DependencyFacet - 0 or more dependency facets

* The model defines all facets as abstract types

e Also the dependency and artifact types are abstract
- Dependencies/Artifacts are by their nature not concrete

— This provides freedom in the core model for supporting the
concept of dependency without constraining it

P ‘:f DEvZuz




defining a collaboration model

E ProjectFacet

hhnp:”.ﬂurg.fulipse.f...

E ProjectType
O id

O description

EI hitp://forg/eclips...

n E Version

0 id

"

hl http://forgfeclipsefemfie...

H artifact

0= hitp:/f forg/eclipse/emf/ ...

E VersionFacet

(=) http:

[lorg/eclipse/emfieco...

dependency

a..

E DependencyFacet

EI http:// forgfeclipsefemfie...

E Dependency faLei o

@ http:// forg feclipsefemf/eco...

"

- ;’ DEvZuz




defining a collaboration model

R

public interface ProjectType extends EObject {
String getId();
void setId(String value);
String getDescription();
vold setDescription(String value);
EList<Version> getVersion();

EList<ProjectFacet> getFacet();

¢! DEvzZuz



defining a collaboration model

//

public interface Version extends EObject {
void setId(String value);
EList<VersionFacet> getFacet();
EList<Dependency> getDependency();

EList<Artifact> getArtifact();

¢! DEvzZuz



defining a collaboration model
J—
o Kepler will work to provide a set of common
implementations
* ProjectFacets
* VersionFacets

* Dependency types
 Artifact types

o Other facets will be able to register themselves
o A few examples of the common implementations

<&/ DEvZuz



<¢! DEVZUZ

project facet extensions




project facet extensions

O licensellrl
O name
O comments

O distrubitionMechanism

E http: [/ / forg/eclipse/emf/ecore /util /ExtendedMetaData

<&/ DEvZuz



project facet extensions

E Participant

id

Partici ts
E articipan name
emailAddress
websiteUr|

fi= http:/{ forg/eclipse/emf/ecore/util /ExtendedMetaData

contributor timezone

developer

EE http:// forg/eclipse/emf/ecore/util/Extended MetaData

H Rale

O name
=
Ml hitp:/{ jorg/eclipse/emfiecare/ util/ Extended MetaData !

<&/ DEvZuz




<¢! DEVZUZ

version facet extensions




version facets

E JavaPackages

= http:// forg/eclipse/emf/ecore/util /ExtendedMetaData

E lavaPackage

O package
O specificationVersion

fi= http:/ {forglfeclipse/emf/ecore/util/ExtendedMetaData

<&/ DEvZuz



version facets

E Licensing

O licenselrl
O pname
O comments

O distrubitionMechanism

@ http:/ f forg/eclipse/emf/ecore/util /ExtendedMetaData

<&/ DEvZuz



<¢! DEVZUZ

how is the model defined?




how Is the model defined

o The collaboration model is defined as XSD'’s

o Is i1s handled and leveraged through the Eclipse
EMF tooling

o An EMF model is generated from the XSD's that
define the core schema

* We also include the common extensions along with
the schema

* We generate standard EMF code to represent the
model

P ‘:" DEvZuz



<¢! DEVZUZ

model adaptors




model adaptors
R

o Kepler will provide Model Adaptors

* These will provide a way to source meta-data from
projects into the collaboration model

* They would be bi-directional

* They would provide a list of the facet types that they
support

* This would also allow more than one source to be
found in a project

<&/ DEvZuz



model adaptors

|

o Consider a PDE model adaptor

* Would support the base of the core model (project id,
version if defined in MANIFEST.MF)

* Would support a source locations extensions
(.classpath)

* Would support an understanding of dependencies
(.classpath)

* Would support an understanding of OSGi imports/
exports

o Therefore it would support those facet types

P ‘:" DEvZuz



model adaptors

|

o Consider a Maven model adaptor
* Would support the base of the core model (pom.xml)

* Would support a source locations extensions
(pom.xmil)

* Would support an understanding of dependencies
(pom.xml)

* Would support an understanding of licensing (if in the
pom.xml)

* Would support other facets (based on pom.xml)
o Therefore it would support those facet types

P ‘:" DEvZuz



<?xml version="1.0" encoding="UTF-8"7>
<core:projectType xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:community="http://www.eclipse.org/kepler/schema/project/facet/community”
xmlns:core="http://www.eclipse.org/kepler/schema/project/core" xmlns:licensing="http://
.eclipse.org/kepler/schema/project/version/facet/licensing"
xmlns:organization="http://www.eclipse.org/kepler/schema/project/facet/organization”
xmlns:participants="http://www.eclipse.org/kepler/schema/project/facet/participants”
xmlns:project="http://www.eclipse.org/kepler/schema/dependency/project">
<core:id>velocity.velocity</core:id>
<core:description>Velocity is a Java-based template engine. It permits anyone to use the
simple yet powerful template language to reference objects defined in Java
code.</core:description>
<core:version>
<core:id>1.4</core:id>
<core:facet xsi:type="licensing:licensing">
<licensing:name>The Apache Software License, Version 2.0</licensing:name>
<licensing:distrubitionMechanism>repo</licensing:distrubitionMechanism>
</core:facet>
<core:dependency xsi:type="project:runtimeDependency">
<project:projectId>velocity.velocity-dep</project:projectId>
<project:versionld>1.4</project:versionld>
</core:dependency>
</core:version>
<core:facet xsi:type="community:community">
<community:mailinglList>
<community:name>Maven User List</community:name>
<community:unsubscribeEmailAddress>velocity-user-unsubscribe@jakarta.apache.org</
community:unsubscribeEmailAddress>

o/ DEvzZuz



http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.eclipse.org/kepler/schema/project/facet/community
http://www.eclipse.org/kepler/schema/project/facet/community
http://www.eclipse.org/kepler/schema/project/core
http://www.eclipse.org/kepler/schema/project/core
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/facet/organization
http://www.eclipse.org/kepler/schema/project/facet/organization
http://www.eclipse.org/kepler/schema/project/facet/participants
http://www.eclipse.org/kepler/schema/project/facet/participants
http://www.eclipse.org/kepler/schema/dependency/project
http://www.eclipse.org/kepler/schema/dependency/project
mailto:velocity-user-unsubscribe@jakarta.apache.org
mailto:velocity-user-unsubscribe@jakarta.apache.org

