
Eclipse Kepler

agenda

What are the aims of Kepler

Defining a collaboration model

Project facet extensions

Version facet extensions

How is the model defined?

Model adaptors

Next steps

what are the aims of
Eclipse Kepler

what are the aims of Kepler

To build the concept of a community or
collaboration model
To service a loosely coupled collaboration
approach
To integrate common collaboration technologies’
• artifact repositories

• issue tracking

• build servers

• instant message solutions (IRC/IM)

• mailing lists

what are the aims of Kepler

To develop in a open, transparent fashion at the
Eclipse Software Foundation
To leverage other Eclipse projects
• Building/Assembly through Buckminster

• Issue tracking through Mylyn
• Source Control Management integration Eclipse SCM
• On-line collaboration through Corona

• ECF for communication protocols

To bring new technologies into Eclipse (Maven)

what are the aims of Kepler

Kepler should:
• Gather information for collaboration
• Adapt to existing sources of meta-data

• Provide links out to existing tooling to work with
collaboration technologies (Issue tracking etc)

• Provide a format for searching and finding projects
• Provide collaboration tooling integration where is it

missing
– Mailing lists, Forums etc

defining a collaboration
model

defining a collaboration model

We need very basic concepts to start
collaboration
• What is a project?

• What is a version?
• Does the project have dependencies?
• What artifact(s) does a project produce that can be

used?

Beyond this core of information projects can vary
wildly in there content

defining a collaboration model

How does this information help?
• It provides the basis to identify a project
• It understands the concept of slow moving

dimensions on collaboration (time, releases, versions)
• It accepts that there is a product that can be

consumed from the project
• It can be created from a number of sources
• It is not specific to any build tool or language

defining a collaboration model

defining a collaboration model

Extending the collaboration model
• The Core model provides the basis for extension
• Extensions are provided at three places:

– ProjectFacet - 0 or more project facets
– VersionFacet - 0 or more version facets
– DependencyFacet - 0 or more dependency facets

• The model defines all facets as abstract types

• Also the dependency and artifact types are abstract
– Dependencies/Artifacts are by their nature not concrete
– This provides freedom in the core model for supporting the

concept of dependency without constraining it

defining a collaboration model

defining a collaboration model

public interface ProjectType extends EObject {

 String getId();

 void setId(String value);

 String getDescription();

 void setDescription(String value);

 EList<Version> getVersion();

 EList<ProjectFacet> getFacet();

}

defining a collaboration model

public interface Version extends EObject {

 void setId(String value);

 EList<VersionFacet> getFacet();

 EList<Dependency> getDependency();

 EList<Artifact> getArtifact();

}

defining a collaboration model

Kepler will work to provide a set of common
implementations
• ProjectFacets

• VersionFacets

• Dependency types

• Artifact types

Other facets will be able to register themselves
A few examples of the common implementations
are

project facet extensions

project facet extensions

project facet extensions

version facet extensions

version facets

version facets

how is the model defined?

how is the model defined

The collaboration model is defined as XSD’s
Is is handled and leveraged through the Eclipse
EMF tooling
An EMF model is generated from the XSD’s that
define the core schema
• We also include the common extensions along with

the schema

• We generate standard EMF code to represent the
model

model adaptors

model adaptors

Kepler will provide Model Adaptors
• These will provide a way to source meta-data from

projects into the collaboration model

• They would be bi-directional

• They would provide a list of the facet types that they
support

• This would also allow more than one source to be
found in a project

model adaptors

Consider a PDE model adaptor
• Would support the base of the core model (project id,

version if defined in MANIFEST.MF)

• Would support a source locations extensions
(.classpath)

• Would support an understanding of dependencies
(.classpath)

• Would support an understanding of OSGi imports/
exports

Therefore it would support those facet types

model adaptors

Consider a Maven model adaptor
• Would support the base of the core model (pom.xml)

• Would support a source locations extensions
(pom.xml)

• Would support an understanding of dependencies
(pom.xml)

• Would support an understanding of licensing (if in the
pom.xml)

• Would support other facets (based on pom.xml)

Therefore it would support those facet types

the collaboration model
<?xml version="1.0" encoding="UTF-8"?>
<core:projectType xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:community="http://www.eclipse.org/kepler/schema/project/facet/community"
 xmlns:core="http://www.eclipse.org/kepler/schema/project/core" xmlns:licensing="http://
www.eclipse.org/kepler/schema/project/version/facet/licensing"
 xmlns:organization="http://www.eclipse.org/kepler/schema/project/facet/organization"
 xmlns:participants="http://www.eclipse.org/kepler/schema/project/facet/participants"
 xmlns:project="http://www.eclipse.org/kepler/schema/dependency/project">
 <core:id>velocity.velocity</core:id>
 <core:description>Velocity is a Java-based template engine. It permits anyone to use the
 simple yet powerful template language to reference objects defined in Java
 code.</core:description>
 <core:version>
 <core:id>1.4</core:id>
 <core:facet xsi:type="licensing:licensing">
 <licensing:name>The Apache Software License, Version 2.0</licensing:name>
 <licensing:distrubitionMechanism>repo</licensing:distrubitionMechanism>
 </core:facet>
 <core:dependency xsi:type="project:runtimeDependency">
 <project:projectId>velocity.velocity-dep</project:projectId>
 <project:versionId>1.4</project:versionId>
 </core:dependency>
 </core:version>
 <core:facet xsi:type="community:community">
 <community:mailingList>
 <community:name>Maven User List</community:name>
 <community:unsubscribeEmailAddress>velocity-user-unsubscribe@jakarta.apache.org</
community:unsubscribeEmailAddress>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.eclipse.org/kepler/schema/project/facet/community
http://www.eclipse.org/kepler/schema/project/facet/community
http://www.eclipse.org/kepler/schema/project/core
http://www.eclipse.org/kepler/schema/project/core
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/version/facet/licensing
http://www.eclipse.org/kepler/schema/project/facet/organization
http://www.eclipse.org/kepler/schema/project/facet/organization
http://www.eclipse.org/kepler/schema/project/facet/participants
http://www.eclipse.org/kepler/schema/project/facet/participants
http://www.eclipse.org/kepler/schema/dependency/project
http://www.eclipse.org/kepler/schema/dependency/project
mailto:velocity-user-unsubscribe@jakarta.apache.org
mailto:velocity-user-unsubscribe@jakarta.apache.org

