
IoT Day Grenoble 2018

Dejan Bosanac, Red Hat

Eclipse Hono and all things
IoT messaging

Who am I

Dejan Bosanac

Software Engineer @ Red Hat

●  Messaging and IoT

Open source committer

●  Eclipse Hono
●  Eclipse Kapua
●  Apache ActiveMQ

Eclipse Hono provides a
uniform API
for interacting with
millions of devices
connected to the cloud via
arbitrary protocols.

4

●  An Eclipse Foundation IoT project ...
○  Bosch and Red Hat as main contributors

●  https://www.eclipse.org/hono/

Eclipse Hono
Connect. Command. Control.

5

●  Open source IoT connectivity platform running on …
○  Kubernetes
○  OpenShift
○  Docker Swarm

●  On-premise & in the cloud
●  Provided by a set of Docker containers

Eclipse Hono
Connect. Command. Control.

6

●  Tailored general messaging for IoT solutions
●  Provide standard APIs for interacting with devices
●  Support for arbitrary protocols (MQTT, AMQP 1.0, HTTP, …)
●  Support different underlying messaging infrastructures

○  AMQP 1.0 based
○  JMS
○  Apache Kafka
○  RabbitMQ

Eclipse Hono
Goals

7

●  Scalability
●  Multi-tenancy
●  Device-based security
●  Multi-protocol support

Eclipse Hono
Features

Things Cloud
Command & Control

Telemetry

optimized for throughput
scale-out with #messages

optimized for reliability
scale-out with #devices

many existing protocols
HTTP, MQTT, CoAP

etc

arbitrary providers &
deployment options

Building Blocks

API Endpoints &
Security Protocol Adapters

Business
Applications

Devices

AMQP 1.0

Hono

AMQP messaging
network

end to end flow control

AMQP 1.0

AMQP 1.0

HTTP
MQTT
etc.

Micro-Service Design
≥ 0.5-M7

Auth
Server

Authentication

MQTT Adapter

Device Registration

Telemetry

Event

Telemetry

Event

Credentials

MQTT
Devices

Business
Applications

ActiveMQ Artemis
Broker

Telemetry Event

Authentication

Hono
Messaging

Qpid Dispatch
Router

Device
Registry

Provided by 3rd Party/Demo Implementation

11

Eclipse Hono
Telemetry & Event

●  used by devices to send data/event downstream
●  leverages on “direct messaging” …

○  Telemetry
○  Devices can send data only if consumers are online
○  No broker involved

●  … “store and forward”
○  Event
○  Broker for storing event with a “ttl” eventually

●  consumers receive data published by devices belonging to a particular tenant

12

Eclipse Hono
Device Registration

●  used to make Hono aware of devices that will connect to the service
●  solutions/consumers may use the API to get information about devices

●  operations

○  register, deregister, get information, assertion

●  for every message sent by a device …

○  a registration assertion (JWT) is attached by the protocol adapter

○  it’s verified by messaging before sending the message downstream

○  a disabled device will have such check fails

Registration Assertion

MQTT Adapter Hono
Messaging

Device
Registry

1. publish telemetry

2. assert (tenant-id, device-id)

6. forward message

5. create message
 (incl. token) 7. validate token

8. forward message

Device

4. Json Web Token

3. check if device is
registered and enabled

<<public key>>

14

Eclipse Hono
Credentials

●  handle authentication for devices on protocol adapters
●  used by protocol adapters to retrieve credentials used to authenticate devices connecting to

the adapter (MQTT, HTTP, …)
●  different types of credentials

○  psk, hashed password, public key, …
●  operations

○  add, get, update, remove
●  Where an identity management system is already in place (i.e. Keycloak) …

○  needs for having a “facade” from this API to such a system

15

Eclipse Hono
Authentication

●  handle authentication between components (protocol adapters, messaging, …)
●  used by clients/components for getting a token asserting …

○  subject’s identity
○  granted authorities

●  other services will use such a token to make authorization decisions on a client’s request to
read or write from/to a resource or to invoke a certain operation
○  i.e. messaging checks if an adapter can write telemetry data

●  Where an identity management system is already in place (i.e. Keycloak) …
○  needs for having a “facade” from this API to such a system

Features Hono 0.5

●  Uniform APIs for consuming telemetry data and events

●  MQTT, HTTP protocol adapters

●  Device-level Authentication

●  Tenant based Security Model

●  Horizontal Scalability

Monitoring

Future

●  Performance and scalability testing and tuning
●  Continue improving OpenShift and EnMasse integrations
●  Command and control API
●  Tenant API

19

Eclipse Hono
Command & Control

●  used by applications to send commands to devices
●  command execution can be “just in time” or “deferred”

○  just in time : command already executed, the response from device contains the result

○  deferred : command not executed yet, the response from device specifies it’s accepted; for long
running operations the result will be provided later

AMQP 1.0

20

Simple deployment

Protocol Adapters
AMQP 1.0

AMQP 1.0

HTTP, MQTT

Qpid Dispatch
Router

ActiveMQ Artemis
Broker

AMQP 1.0

Business
Applications Devices API Endpoints &

Security

21

Routing vs Brokering
Producer Broker Consumer

Send message

Accepted

Send message

Accepted

22

Routing vs Brokering
Producer Router Consumer

Send message

Accepted

Send message

Accepted

23

●  Store and Forward
○  Queue
○  Topic

●  Direct
○  Anycast
○  Multicast (Broadcast)

Addressing semantics

AMQP 1.0

24

Scalable deployment

Protocol Adapters
AMQP 1.0

AMQP 1.0

HTTP, MQTT

●  EnMasse …
○  a messaging-as-a-service platform
○  elastic scaling
○  multiple communication patterns
○  more info : enmasse.io
○  … and more and more …

Business
Applications Devices API Endpoints &

Security

25

Basic idea

R

R

R

P C

B

B

26

●  Open source cloud messaging running on Kubernetes and OpenShift
●  enmasse.io

Messaging-as-a-Service

27

●  Multiple communication patterns: request/response, publish/subscribe and competing
consumers

●  Support for “store and forward” and direct messaging mechanisms
●  Scale and elasticity of message brokers
●  AMQP 1.0 and MQTT support
●  Simple setup, management and monitoring
●  Multitenancy: manage multiple independent instances
●  Deploy “on premise” or in the cloud

Features

28

29

●  Queue
○  store-and-forward = true
○  multicast = false

●  Topic
○  store-and-forward = true
○  multicast = true

●  Anycast
○  store-and-forward = false
○  multicast = false

●  Broadcast
○  store-and-forward = false
○  multicast = true

Address types

30

●  Persistence
○  In memory
○  Persisted

●  Scaling
○  Single broker
○  Pooled

●  HA

Flavor examples

31

32

33

●  Authentication and authorization
●  Service broker API
●  HTTP(S)
●  Broker address space

○  Message grouping
○  Distributed transactions
○  Message ordering

●  Multiple flavors
○  Apache Kafka?

●  ...

Future
In progress/TODO

Resources

●  Eclipse Hono - https://www.eclipse.org/hono
●  EnMasse - http://enmasse.io
●  ActiveMQ Artemis - https://activemq.apache.org/artemis/
●  Qpid Dispatch Router - http://qpid.apache.org/components/dispatch-router/

Thank you ! Questions ?

