
Dr. Dimitar Valtchev, CTO, ProSyst Software
GmbH

Profiling Java Applications Running
on Embedded Devices with
Restricted Resources

Introduction and problem description
Architecture and main features of ProSyst (m)JProfiler
Short demo
Use case profiling of mobile devices with OSGi stack
Summary

Agenda

2

Introduction

Nowadays there are several popular Java profilers which
work very well with J2SE and J2EE JVMs
They support:

Local and remote profiling
Memory profiling
CPU profiling
Visual representation and statistics (VM load, GC activities, etc.)

Profiling Java applications on resource-constrained mobile
and embedded devices is not possible/efficient with the
existing tools

3

Problem Description

Profiling on a emulator is rarely helpful because there is a
big difference in application behavior when running on an
emulator and when running on the mobile device regarding:

Memory usage
CPU usage
Storage devices (e.g. flash)

Profiling on the target system is often not possible because
of the missing support for numerous combinations OS/JVM
Even if the JVM on the target system can be run in profiling
mode , the behavior of the applications is often influenced
significantly by the restricted resources
The standard profilers does not taken into account some
well established architectures used for Java embedded
systems - OSGi

4

JProfiler Architecture

Solution: Optimized profiling agent which communicates
actively with the profiling environment

Target Developer PC

OS

JVM

Java Application

JProfiler Agent

OS

JVM

JProfiler Front-end
Network

Legend: ProSyst components

5

Minimal impact on the application shall consume minimal
system resources and shall not influence the application
behaviour
Low memory consumption of the profiler agent
Portability
Convenient deployment of the profiling agent and easy
configuration

Profiling Agent Requirements

6

Buffers the information per thread
Does not need locking except when sending the buffer
Can send multi-records (reduces the traffic because the type and
thread is the same and is sent only once)

Uses RLE encoding
40% reduction in traffic

Memory is allocated in chunks
Limits the overhead from small allocations
Prevents fragmentation

Customized hash tables for different record types
(depending on how well they hash)

Implementation Details 1(2)

7

Only bare minimum of information is kept in the agent, all
is sent for processing to the front-end

Storing the information inside the agent is in most cases slower
than sending, not to mention the increased memory foot-print

All machine dependent code is placed in separate
modules

It is easier to port to another platform
Avoids the hard maintenance of ifdefs
Includes only raw methods for working with sockets, threads and
time
If possible, methods from JVMPI are used

Implementation Details 2(2)

8

ProSyst (m)JProfiler Key
Features 1(3)

(m)JProfiler is
implemented as a plug-in
for Eclipse
Local and remote profiling
Visual representation of
the VM load in terms of:

Active and total bytes
Instances
Threads
Classes
Garbage Collector activity

9

ProSyst (m)JProfiler Key Features
2(3)

Memory and CPU
profiling
Two methods for CPU
profiling:

Timing method: Measures
the time it takes to invoke a
Java method and the
number of method calls.
Sampling method: Tracks
the threads activity over a
specified interval of time.

10

ProSyst (m)JProfiler Key Features
3(3)

Full thread dump and
deadlock detection
Threads activity
information
Trigger support
Tracing heap information
and memory stack frames
Incoming and outgoing
references
Garbage collection during
profiling

11

Supported Platforms (standard installation)

12

MIPS (Big and Little Endian) Linux

ARMLinux

x86Linux

ARMSymbian

ARMWindows CE

x86Windows

ProcessorOS

Other Supported Platforms

13

Power PCVxWorks

SH4VxWorks

SH4QNX

Power PCNet BSD

x86Net BSD

Power PCLinux

ProcessorOS

Supported Java Virtual Machines

Sun JDK
IBM JDK
Oracle JRockit
IBM J9
Sun CVM
Skelmir CEE-J
Aonix PERC
Esmertec Jeode

14

Short Demo

15

Use case profiling of mobile devices
running OSGi stack (Sprint/Titan or Nokia
eRCP)

Why OSGi for Mobile/Embedded Devices?
Why not simply use CDC as it is?
Because it does not provide

a dynamic component model runtime & APIs
support for existing application models (like MIDP, eRCP, etc.)
an application focused security model
base services as configuration, logging, etc.
device management and deployment APIs

16

OSGi Mobile specification became part of the JCP as
JSR 232: Mobile Operational Management.
JSR 232 Mobile Extensions to OSGi:

Generic support for multiple application models
(eg. MIDP, Xlets, DoJa, etc.)
A standardized deployment and packaging model
Auto-configuration of bundles and packages
A standardized device management model for the

Java environment, aligned to OMA-DM Standard
Monitoring API
Standard condition classes for mobile phones

OSGi Architecture for Mobile Application

17

Industry uptake: Sprint Titan Mobile Java

The most suitable cross-platform runtime for use in mobile handsets
Source: Sprint Developer Site: http://developer.sprint.com

Sprint Titan

MIDlets with LCDUI GUI

Game features
Set of runtime classes
Various JSRs
Sprint Services & APIs

J2ME CLDC VM J2ME CDC/FP 1.1 VM

Remote management
Shared components and services
OSGi / JSR 232
Sprint Services & APIs

eRCP
applications,

rich GUI
(eSWT UI)

Web
W3C

Widgets
(Browser UI)

Other
application

models and UI
libraries

18

Deployment Models

Application Manager

Industry uptake: Nokia eRCP for S60

OSG Comp. eRCP Comp. S60 Comp. Java
Runtime Native Platform

Symbian 9.2
S60 3.1S60 UI

eSWT

CDC 1.1/FP 1.1

OSGi R4
(+ Mobile Extensions) S60 Integration

Java Virtual Machine

eJFaceeWorkbencheUpdate Desktop
integration

eRCP appsWeb appsOSGi apps

19

Full integration with the Symbian look & feel. eSWT
provides Symbian-like components.
Icons for all installed eSWT applications are shown on the
desktop.
There is no difference in the behaviour of Symbian and
Java applications. In most cases, the start of the Java
applications is even faster.

Symbian UI Integration
1(2)

20

Symbian UI Integration 2(2)

Switching between any applications including eRCP by
using the task list of the phone.
The example below shows the started eRCP eSWT Demo
application and the Contact Manager application. Both
applications appear in the task list of the phone and the
task list can be used for switching between them.

21

[Mem stats]
Used memory: (instant) 378980 bytes , (peak) 378980 bytes
Used blocks: (instant) 77, (peak) 77

[IO stats]
Send data: 90607751 bytes
Send time: 9380 ms
Average speed: 9659674 b/s

[CPU stats]
METHOD_ENTRY - Number of calls: 11379785
METHOD_EXIT - Number of calls: 11379767
OBJECT_ALLOC - Number of calls: 724705
OBJECT_FREE - Number of calls: 672304
OBJECT_MOVE - Number of calls: 315183

CPU and Memory Statistics (Nokia S60)

22

370 KB Used Memory
Send Data:

Memory & CPU profiling: 90 MB (9.6 MB/s)
Memory profiling: 74 MB (6.9 MB/s)
CPU profiling: 14 MB (296 KB/s)

CPU Statistics
Memory & CPU profiling: 11 Mio. method calls, 724 k object alloc
Memory profiling: 524 k object alloc
CPU profiling: 5 Mio. method calls

CPU and Memory Overview

23

Profiling of embedded Java applications has special
requirements to the profiling agent and the IDE.
The used memory and the influence on the applications
being profiled can be significantly reduced by increasing
and optimizing the data stream sent to the profiling
application.
Such an approach is applied in the existing ProSyst s
(m)JProfiler.
ProSyst (m)JProfiler is used successfully in profiling many
embedded applications and is for example standard part of
Titan Developer Tools.

Summary

24

Dr. Dimitar Valtchev, CTO, ProSyst Software GmbH
d.valtchev@prosyst.com

ProSyst Products
http://www.prosyst.com/products/tools.html

ProSyst Developer s Zone
http://dz.prosyst.com

Sprint Titan Platform
https://developer.sprint.com/site/global/develop/technologies/sprint_tit

an/p_sprint_titan.jsp

Thank you for your attention!

25

