The PHP Company
zend
R&D Department
DEV2QA
PDT
1.1
Feature Name : Code Completion
Module name : PHPCompletionEngine
Writer Date Comment Approved
Michael Spector 6/15/2008 | 1. Dev2QA
2. Target Version - PDT 1.1
)R o Yo [¥ oo oY TP TP 2
1.1 Requirement RationNal€..ueueeeeeeiiieeeiiiieieiiiieeeeeaeeeiaieeeeriseeeeriseeesraseeeersneeees 2
1.2 NeW TerminNOlOQY tuuuueeeeeieeeeteeettteateteaeeeetaeeeesaaseeetsaneeeeraeeeeraneeeeesneeeeees 2
1.2
1.2,
1.2
1.2
1.2
1.3 Detailed DeSCriPtiON .ttt ettt iieiii ittt ttttieiiiiiieeeeteeeteeiiiiiiissseeeeeeeeiinns 4
1.3.1 Explicit Code Completion. ueeeeeeeeeeeeeiiieeeiieeeeiiaeeeriseeeesraseeeersseeeerssneeeees 4
1.3.2 Automatic Code Completion. . oeeeeereeeeeeriiieeiiiieeiaieeeieiieeeeiiieeeeraieeeeeanns 4
1.3.3 Completion MatCh..uieeeeeeiiieeiiiiieeeiiiieeeeriieeeeiiaeeeeiiieeeeiiieeeeisiseeeissneeeenns 4
1.3.4 Code Completion BaS@...uuieeeeeeiiieeeiiiieeeeiiieeeeiiieeeeisieeeiiieeeeriseeerianeeeees 4
1.3.5 Completion PropoSalS..uuueeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiiieiiiiiiiiiisneeeeeeeiiiennnns 5
2. Testing HighlightS. . uoeeeuiiieeeiiiieeeiieieteiiiiee et iiieeeiiieeeieineeeriiseeesiaeeeeiaseeeerenseees 7
G T O] Yo =T o 1 P 7
4, FUtUIre DeVel oD M ENt . sttt ettt ittt ittt ittt it a i tteteeiiieaiineeseeeeeeiiiiiiinnnenes 7

16 June 2008

Page 1

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHF Company

zend

R&D Department

1. Introduction
1.1Requirement Rationale

Code Completion predicts what user wanted to type by observing word prefix and
source code context, and provides a list of possible completions.

1.2New Terminology
1.2.1Camel-case match
User can request code completion by providing only medial capital letters in the
original PHP element, or even a string constructed from substrings that start
from those capital letters.
For example:
ZF matches ZendForm
ZeFo also matches ZendForm

1.2.2Workspace scope

This is a search scope, which is used for building PHP element proposals. This
scope contains all open PHP projects including their build path (include path).

1.2.3PHP Built-in Variables

http://php.net/reserved.variables

1.2.4PHP magic methods
http://php.net/oop5.magic

16 June 2008 Page 2

http://php.net/oop5.magic
http://php.net/reserved.variables
http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHF Company

zend

R&D Department

1.2.5Type Inference Engine

This is @ mechanism that allows determine type of PHP expression (either a

simple type or a complex type consisting of one or more simple types) by
investigating source code as well as PHP-doc sections.

Example #1:

<?php
function foo () {
if (something()) {
return new A();
}
return new B();
}
?2>

foo() has complex return type: {A, B}

Example #2:
<?php
/**
* @Qreturn C
*/
function foo () {

}
?>

foo() has return type C

Example #3:

<?php
/**
* (dreturn C|B
*/
function foo () {

}
?>

foo() has complex return type: {C, B}

I More on Type Inference engine can be found by exploring Unit Tests (package
org.eclipse.php.test.headless.core.typeinference)

16 June 2008 Page 3

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHF Company

zend

R&D Department

1.3Detailed Description

1.3.1Explicit Code Completion
Code completion is shown when user presses CTRL + whitespace.
The proposals shown in explicit completion contain the same list as in automatic
completion.

1.3.2Automatic Code Completion
Code completion is shown automatically while user types code.
The proposals shown in automatic completion contain the same list as in explicit
completion.

1.3.3Completion Match
Code completion matches the user prefix either using an exact case-insensitive
prefix comparison or camel-case match.

1.3.4Code Completion Base

Code completion is based on type inference engine that makes use of PHP-doc
description as well as of the code.

16 June 2008 Page 4

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHP Company

zend

R&D Department

1.3.5Completion Proposals

The following table defines what completion proposals will be shown
depending on the current code context (where the cursor is now) and on the
prefix that user has already typed.

Reminder: PHP elements defined inside of function are belonging to the global

scope.

Code Context

Typed Prefix

Expected Proposals

Script

All keywords

Script

new Abc

All classes from
workspace scope that
start match 'Abc'

Script

Abc

All keywords, classes,
interfaces, methods and
non-class constants from
workspace scope that
start match 'Abc'

Script

Abc::

All static fields declared in
class Abc, or in its super-
class hierarchy, e.g.
constants, variables,
methods.

Script

Abc::XYZ

All static constants and
methods declared in class
Abc, or in its super-class
hierarchy that match
'XYZ'.

Script

Abc::$

All static variables
declared in class Abc, or
in its super-class
hierarchy.

Script

Abc::$xyz

All static variables
declared in class Abc, or
in its super-class
hierarchy that match
'$xyz'.

Script

exp->

All members declared in
type(s) represented by
the object referenced by
exp expression, or in its
super-class hierarchy,
e.g. constants, variables,
methods.

16 June 2008

Page 5

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHP Company

zend

R&D Department

Script

exp->xyz

All members declared in
type(s) represented by
the object referenced by
exp expression, or in its
super-class hierarchy that
match 'xyz', e.g.
constants, variables and
methods.

Script

$xyz

Variables visible in
current scope, e.g.
function arguments, local
variables, global variables
(even without global
declaration), $this
variable in case we are
inside of class method
and PHP built-in variables
that match 'xyz'.

Class Declaration

class A

Two keywords: 'extends'
or 'implements'. If there
where a prefix, it should
complete to the keyword
that starts from this

prefix.

Class Declaration class A implements Xyz All interfaces that match
|Xyzl

Class Declaration class A extends Xyz All classes that match
lezl

Interface Declaration interface A extends Xyz All interfaces that match
|Xyzl

In class body Nothing

In class body

abc

All keywords used for
declaring class members,
e.g. accessibility (private,
public, etc...), member
type (var, function, etc...),
etc... that match 'abc'.

16 June 2008

Page 6

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

" The PHP Company

zend

R&D Department

In class body

function xyz

Class magic methods,
class constructor, all
derived from super
classes' non-private
methods that match 'xyz'.
Prefix 'xyz' is not
mandatory - in this case
all results will be
available.

In method parameters

function foo(Abc

All classes or interfaces
that match 'Abc’

In PHP-doc *@ All PHP-doc tags
In PHP-doc * @param $ All method parameters
In PHP-doc * @return All method return types

determined from source
code.

2. Testing Highlights

You have to understand what the abilities of Type Inference engine are before
testing Code Completion feature.

3. Unit Testing

Please observe existing Unit Tests from the package
org.eclipse.php.test.headless.core.codeassist, and add more.

4. Future Development

« Improve completion placeholder support: when completing function call show
arguments in a placeholder that can be easily edited, as in example:

« Add PHP 5.3 support.

stopilontext)}

16 June 2008

Page 7

http://int.zend.com/wiki/index.php/Image:Zend_logo_color_M.gif

	1.Introduction
	1.1Requirement Rationale
	1.2New Terminology
	1.2.1Camel-case match
	1.2.2Workspace scope
	1.2.3PHP Built-in Variables
	1.2.4PHP magic methods
	1.2.5Type Inference Engine

	1.3Detailed Description
	1.3.1Explicit Code Completion
	1.3.2Automatic Code Completion
	1.3.3Completion Match
	1.3.4Code Completion Base
	1.3.5Completion Proposals

	2.Testing Highlights
	3.Unit Testing
	4.Future Development

