
ECF Autobuild System

Part 2

Summary
This report continues the description of the automatic build system we use for building the
Eclipse ECF plugin. It address the topics listed in the Fourth Stage and suggests topics for a Fifth
Stage.

Contents
Summary..1

Additonal Cruisecontrol Projects...2

Release Builds...3

Integration Build..3

The mapVersionTag ..3

The Six Platform Plugins/Fragments...4

Plugins..4

Fragments...4

Jar Signing...4

createZipForSigning..4

signJars...4

signJarsReady..5

signJarsZip...5

deploy...5

Fifth Stage..5

09/11/08 Page 1 of 5 Ted Kubaska

ECF Autobuild System

Additonal Cruisecontrol Projects
We now have nine cruisecontrol projects. The following table lists them. The extra projects
result from the following needs.

● The Ganymede release uses ECF 2.0. Work on ECF must, of course, contine, and it does,
being called 2.1. We made CVS branch for ECF Release 2.0 called Release_2_0.

● The Eclipse Ganymede platform uses six plugin/fragments from ECF 2.0. Eclipse
Ganymede is called 3.4. So when we build ECF 2.0, we must build two versions, one for
Eclipse 3.3 (which contains those six plugins/fragments) and another for Eclipse 3.4
(which is missing those six plugins/fragments because they are already there as part of
the platform). When we build ECF 2.1, it is always for Eclipse 3.4.

CC Project1 Build
Type2

Destination3 Signed? Ant Publisher When
run?

mapVTag4 Map
VersionTag5

3.3ecf2.0 R33 2.0Test yes ant33Rel20.xml forced
1PM

Release_2_0 Release_2_0

3.4ecf2.0 R34 2.0Test/3.4 yes ant34Rel20.xml forced
2PM

Release_2_0 p2_work
around_1

ecf2.0 A20 not saved no none 30 min Release_2_0 Release_2_0

ecfIntegration I integration no antint.xml 8AM Mon Release_2_0 Release_2_0

3.3Daily2.0 D3320 dailies no antscp.xml 4PM Release_2_0 Release_2_0

3.4Daily2.0 P20 3.4dailies no ant34Daily20.xml 3PM Release_2_0 p2_work
around_1

ecf2.1 A21 not saved no none 47 min HEAD HEAD

3.4Daily2.1 P21 3.4dailies2.1 no ant34Daily21.xml 5PM HEAD p2_work
around_1

3.3Daily2.1 D dailies2.1 no ant33Daily21.xml 6PM HEAD HEAD

1 Projects with 3.4 in the name are missing the six platform plugins/fragments.

2 The buildType is just an identifier used in build config files.

3 One dev.eclipse.org, prepend this directory with downloads/technology/ecf/. Note that the release builds go into
test directories and must be manually copied into the release directories (2.0 and 2.0/3.4).

4 The mapVtag identifies the CVS branch. Calling it mapVTag seems a misnomer that has caused confusion.

5 The mapVersionTag identifies a CVS tag. Unless specified explicitly as something different, it equals mapVTag.
Calling it mapVersionTag seems a misnomer. It operates like a CVS tag,

09/11/08 Page 2 of 5 Ted Kubaska

ECF Autobuild System

● The 2.0 builds monitor /home/ted/workanonRelease_2_0 on ecf2. The 2.1 builds
monitor /home/ted/workanon on ecf2.

Release Builds
Note that the two release builds are listed as forced. You can't have a strictly “forced” build in
cruisecontrol. But what we do in these cases is set the modification set to a particular file rather
than the CVS repository. Cruisecontrol checks the state of this particular file (3.3daily_kick
for R33 and 3.4daily_kick for R34) at 1PM for R33 and 2PM for R34. This means that if you
touch one of those files, cruisecontrol will start build when its schedule has it look at them. But
we never do modify those files, so effectively, the R33 and R34 are only forced builds.

Integration Build
The integration build provides plugins/fragments to the platform. Now actually we builld
everything and stick it in the downloads/technology/ecf directory. We tag this build as
v<timestamp>. So what makes the integration build special is that we provide map and psf files
that pull out the six plugin/fragments. We don't need to include all the other plugin/fragment jars,
but it's just easier to do so.

The mapVersionTag
Normally this is just HEAD or the name of the branch you're building. The exception is when
you're building for 3.4. When we build for 3.4, we don't want to include the six platform plugins/
fragments in the build product. But we need these plugins in our build space to make a successful
build.

When we do a 3.4 build, we are building for the latest platform integration. So we want to take
the copies of the six plugins/fragments used in that integration. We don't want to check out and
build these plugin/fragments. So that's what the ant_p2_workaround_1 tag does. It contains map
files that leave out the six platform plugins/features.

We also made a branch called ant_p2_workaround. I don't believe we needed to do this; the tag
was enough.

The key thing to note here is that a tag is not a branch. With a branch you can check out the
branch and then make changes and check those changes into the branch without affecting the
mainline. You have two separate lines of development.

09/11/08 Page 3 of 5 Ted Kubaska

ECF Autobuild System

A tag is not a separate line of development. It's a name for a collection of files. You can check
out a tag, edit the files specified by the tag, check then in again and assign the same tag.

The Six Platform Plugins/Fragments
There are four plugins and two fragments. They are as follows.

Plugins
org.eclipse.ecf_2.0.0.v20080603-1120.jar
org.eclipse.ecf.filetransfer_2.0.0.v20080603-1120.jar
org.eclipse.ecf.identity_2.0.0.v20080603-1120.jar
org.eclipse.ecf.provider.filetransfer_2.0.0.v20080603-1120.jar

Fragments
org.eclipse.ecf.provider.filetransfer.ssl_1.0.0.v20080603-1120.jar
org.eclipse.ecf.ssl_1.0.0.v20080603-1120.jar

Jar Signing
We need to sign the two release builds: R33 and R34.

The signing is taken care of in the ant publishers: ant33Rel20.xml and ant34Rel20.xml. These
files are very similar and may be combined at a later date. The ant task dependancy is as follows.

deploy 
signJarsZip 
signJarsReady 
signJars 
createZipForSigning

createZipForSigning
When CC calls the ant publisher, it specifies the deploy task when then drops down to its lowest
dependency, createZipForSigning, which does what it sounds like. It zips up the updatesite
that was just built into a zip called org.eclipse.ecf.updateJars.zip. This zip contains just
the updatesite except for the addition of the file pack.properties. The purpose of this file is
primarily to determine the files that are not to be signed. In our case this is the two jars called
ch.ethz.iks.slp_1.0.0.RC2_v20080505-0900.jar and
org.objectweb.asm_3.0.0.v200803061811.jar.

ted@ecf2:~/Signed> cat pack.properties
pack200.default.args=-E4
pack.excludes=updateSite/plugins/ch.ethz.iks.slp_1.0.0.RC2_v20080505-0900.jar,updateSite/plugins/
org.objectweb.asm_3.0.0.v200803061811.jar
sign.excludes=updateSite/plugins/ch.ethz.iks.slp_1.0.0.RC2_v20080505-0900.jar,updateSite/plugins/
org.objectweb.asm_3.0.0.v200803061811.jar
ted@ecf2:~/Signed>

signJars
This task copies org.eclipse.ecf.updateJars.zip to a staging directory on build.eclipse.org.

09/11/08 Page 4 of 5 Ted Kubaska

mailto:ted@ecf2

ECF Autobuild System

Signing must be done on the machine build.eclipse.org. You have to have permission to run
the signing script. The task waits until the signing is complete. After calling the signing script, it
calls the target waitForChangedAttribs, which executes only if attribs.changed is not set.

The goal is to indicate signing completion by the setting of attribs.changed. So when the
signing is complete, waitForChangedAttribs does not get called and the next operation is that
the zip with now the signed jars comes back to ecf2 in /opt/build.ecf/ecf.signedOutput.

waitForChangedAttribs calls compareAttribs, which sets the property
attribChanged if the signing has completed. Then compareAttribs calls
writeDiffResult if attribChanged is set. writeDiffResult creates the file
attribDiff.txt on ecf2. Then attribs.changed is set if attribDiff.txt exists,
waitForChangedAttribs does not get called, and the zip with the signed jars is sent
back to ecf2.

signJarsReady
This task just calls the bash script getSignJars.sh, which unzips the zip (with signed jars) that
came back from build.eclipse.org into the updatesite directory. That pack.properties file
came back as well, and the script deletes it.

signJarsZip
This task call the bash script signZips.sh. This script unzips the three zips that result from the
build and lists the files in those zips. These files are not signed. The script deletes them and then
copies the signed files from the update site using the list to ensure it gets the right files. Then it
zips them up. The result is that the three zips resulting from the build now contain signed jars.

deploy
This task copies the signed zips and signed updatesite to dev.eclipse.org.

Fifth Stage
The major focus of our fifth stage will be to run some tests as part of the build.

09/11/08 Page 5 of 5 Ted Kubaska

	Summary
	Additonal Cruisecontrol Projects
	Release Builds
	Integration Build
	The mapVersionTag
	The Six Platform Plugins/Fragments
	Plugins
	Fragments

	Jar Signing
	createZipForSigning
	signJars
	signJarsReady
	signJarsZip
	deploy

	Fifth Stage

