JUPYTER NOTEBOOK AND ECLIPSE: DO MODELING WITH A SCRIPT-BASED PROTOTYPING APPROACH

Sébastien Revol
A SYSTEM ENGINEERING TOOL?

- **SysML is a System Modeling Language**
 - Papyrus is an Eclipse/EMF-based SysML editor

- **CEA provides tools on top of EMF SysML models**
 - Papyrus is a central platform to edit models

- **Different purposes**:
 - Model analysis
 - Design automation (code generation, model transformation…)
 - Model simulation
 - Result analysis
 - Optimization
 - Requirement traceability
 - …

- **High need to customize our tools for our different end-users**

- **End-users are generally not eclipse developers**
 - Often not eclipse users…
 - Need to build own custom flows
Many end-users are using…
BUT WHY?!

- **Available**
 - Installed on most desktop
 - Available on cloud

- **Single tool for:**
 - **Data edition**
 - Simple forms
 - (quite) scalable tables
 - **Analyze, compute …**
 - Simple language
 - Rich libraries
 - **Visualize**
 - Graphs (scatter, bars, pie charts…)
 - Conditional formatting
 - Filtering, sorting…

- **XLSX (and CSV): de facto format pivot**
 - Many tools provide import/export

⇒ get results very rapidly
• **Scripting languages**
 • Interpreted, no build/deliver issues

• **Python**
 • Taught at school
 • Very rich community
 • Many libraries
 • Data Science
 • IA
 • …

![Image of language ranking chart](https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages)
ECLIPSE ADVANCED SCRIPTING ENVIRONMENT (EASE)

- https://www.eclipse.org/ease/
ECLIPSE EASE

• multi-languages
 • Python
 • Javascript
 • Ruby
 • …

• Direct access to complete Eclipse Java API from scripting languages
 • Almost anything coded in Java can be coded in scripting languages
 • Dynamic IDE modifications
 • Add new view, menus, buttons…

• Can call functionalities implemented in scripting language
 • Scripting languages inside models for simulation…

⇒ Adding scripting in Eclipse allows engineers with low SW/ skills to adapt the tool to their specific needs and workflows
JUPYTER NOTEBOOK

- https://jupyter.org
- Mix of Markdown and viewer, scripting interpreter
- Simple widget library
- Very rich graph/visualization libs
 - Graphs (plot.ly, matplotlib)
 - Interactive tables

➡️ Jupyter provides simple API to Create dedicated Uis, and propose advanced visualization tools.
EMF + SCRIPTING + JUPYTER VS EXCEL?

- EMF provides a much efficient way to structure information
 - But still requires important sw developpers skills
- Python allows non experts to build their own workflows
 - Computation
 - Analysis
 - Optimization …
- Jupyter provides simple API to create:
 - Simple Forms
 - Advanced visualization

- Moreover, for advanced users:
 - Many external tools/libs propose a python API
 - Python EASE engine allows to easy use them from JAVA!
 - Simpler than building a dedicated JNI interface
 - Jupyter web approach enables to easily integrate JS objects, libs etc…
• Developed a Jupyter specific engine on top of EASE Py4J engine
EXAMPLE : PARAMETRIC ENGINE

- Interactive dashboard for system analysis
- Python used as an action language in models
 - Moka* interpreter executes Python code

*Moka: https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
def run(block):
 block.output = block.input * block.dt + block.previousValue
PARAMETRIC DIAGRAM INTERPRETER

Parameter tuning in jupyter

Java simulation control and result display
Python: Excel import and simulation trace post processing
Eclipse/Java: Model Execution
STATUS AND NEXT STEPS

- **Jupyter engine released under Papyrus umbrella**
 - Also includes Papyrus modules

- **Jupyter engine will move to EASE project**
 - No dependency on Papyrus
 - Should be available in early 2020.
 - Mainly name refactoring, code convention alignments…
OPENCPS* : INTEGRATION OF EXTERNAL FMI SIMULATOR FOR AN INTERACTIVE DASHBOARD

*OpenCPS: ITEA3 European project, https://www.opencps.eu
EXCEL LIMITATIONS?

- Mix edition/computation/vizualization
 - Monolithique files

- Low reuse
 - No modularity

- Computation coded in “assembly” ...

 =SI(H100*SIGNE(O99)<=0;H100/M83/J83;H100*M83/J83)

 - Only the author has a chance to remember the meaning of each cell...

- Closed tool :
 - No easy interactions with other tools