

WHO ARE RENESAS

THE WORLD'S LEADING EMBEDDED SOLUTION PROVIDER

- Renesas is a global semiconductor company built on a strong historical foundation of technological innovation originating from Hitachi, Mitsubishi, and NEC.
 In 2017, Renesas acquired Intersil to become the world's leading embedded solution provider.
 - A global leader in microcontrollers, SoC, analog and power semiconductors
 - Focused on a broad range of Automotive, Industrial,
 Home Electronics, Office Automation and Information
 Communication Technology
 - 780.3 billion yen in net sales in 2017
 - Headquartered in Tokyo, Japan
 - 20,000+ employees worldwide*1

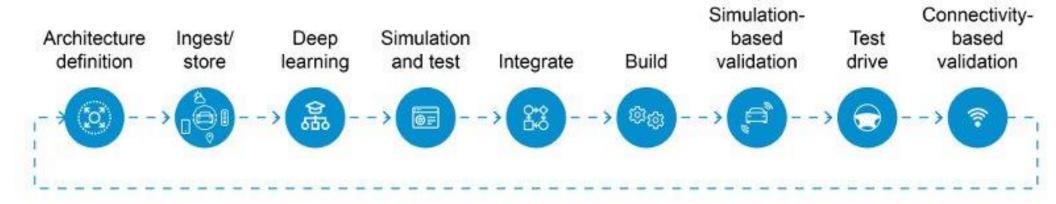
*1: Consolidated, as of March 31, 2018 / SoC: System-on-a-chip

WHAT IS OPENADX?

It is an Eclipse Foundation project.

Purpose is to accelerate the development of autonomous driving (AD).

- Focus is on,
 - Defining reference architecture(s).
 - Specifying open interfaces.
 - · Specifying autonomous toolchain.


WHY OPENADX?

- The software and tooling requirements for Autonomous Driving (AD) are diverse and complex.
- Companies do not have the desire and in some cases technology to invest and build the entire AD toolchain themselves.
- The cost and resource to do so would be huge.
- Therefore consortiums, partnerships and open source development communities will be used to reduce the cost and entry to the market.
 - Specialist companies can focus on key areas of the AD toolchain, e.g. Simulation.
 - OEM's can concentrate on differential areas to increase their business.

Collaboration via OpenADx for AD make sense for all companies involved!

HOW WILL OPENADX ACCELERATE DEVELOPMENT?

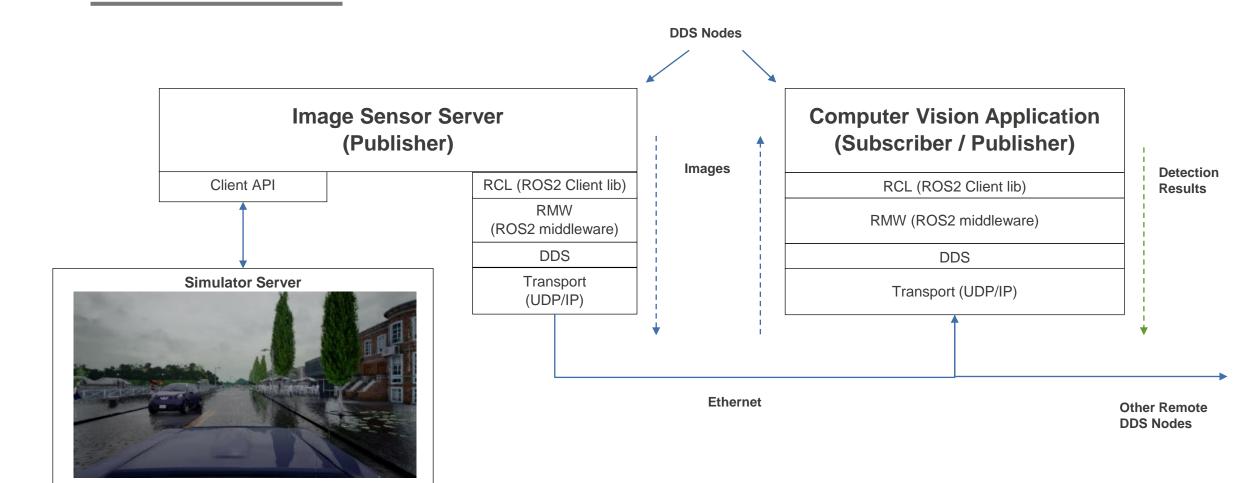
Accelerate by - Enabling seamless integration of tools used in development.

- Seamless integration both within and across the different development stages.
- Also enables integration of tools supplied by multiple vendors.
- Accelerate by Developing new tools and sharing through Open Source Software (OSS).

Removing barriers to share development across multiple vendors/stakeholders

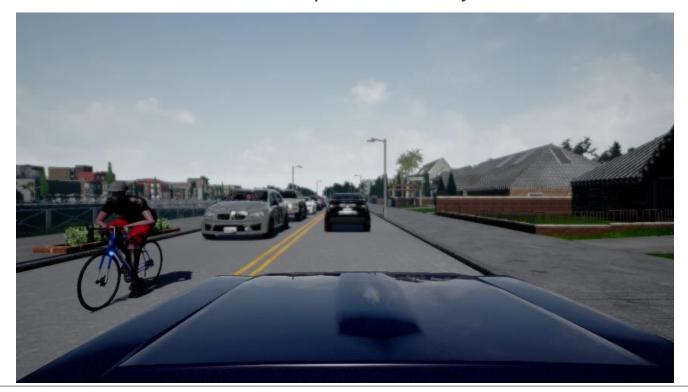
OPENADX ACTIVITIES

- OpenADx activities will targeted at testbeds.
 - A testbed is based on an agreed use case.
 - Its about focusing collaboration on concrete use cases.
 - Should produce demonstrable results.
- Testbed activities at this time are,
 - Simulation Testbed.
 - Create framework to enable easy integration of tools and functions under test.
 - Massive Data Ingest and Management Testbed.
 - Collection and handling of sensor data needed for development/verification.
- The simulation testbed has adopted an open standard to connect tools and components.
 - This should allow local and remote connection of the various parts in a system.
- Our presentation today is focused around this simulation testbed activity and the interconnection of various components.



SIMULATION TESTBED COMMUNICATION

- DDS (Data Distribution Service) is to be used for data exchange between components.
 - Is an open, middleware, standard managed by OMG (Object Management Group).
 - Allows real-time applications to easily share information.
 - Information is 'published' as a 'topic' by a 'node'.
 - And this 'topic' can then be 'subscribed' to by another 'node'/application.
- The data exchange is then to be compliant with ROS2 (Robot Operating System 2).
 - ROS2 defines messages supporting various sensors, measurements and controls.
- This combination is then known as ROS2/DDS.
 - DDS being used as the underlying 'middleware' to exchange these ROS2 messages.
- There are different vendor implementations of DDS available, e.g.
 - FastRTPS, OpenSplice, Connext.
- Various transport layers can be supported, typically this is over an IP connection.


ROS2/DDS EXAMPLE

DRIVING SIMULATORS

- A key part to the simulation test bed is the driving simulator.
 - Allows testing of ADAS (advanced driver assistance systems) and AD systems.
- Some solutions are AirSim, CARLA, Deepdrive, Udacity, Tesis.

DRIVING SIMULATORS

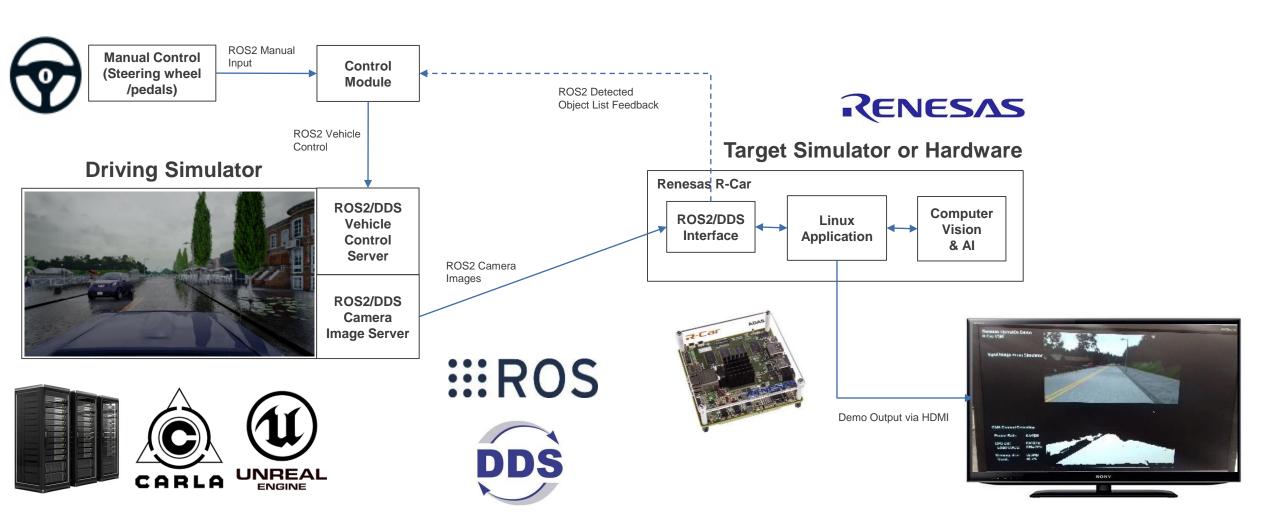
• Multiple camera views, e.g. stereoscopic

They can replace some expensive road testing and provide reproducible test cases

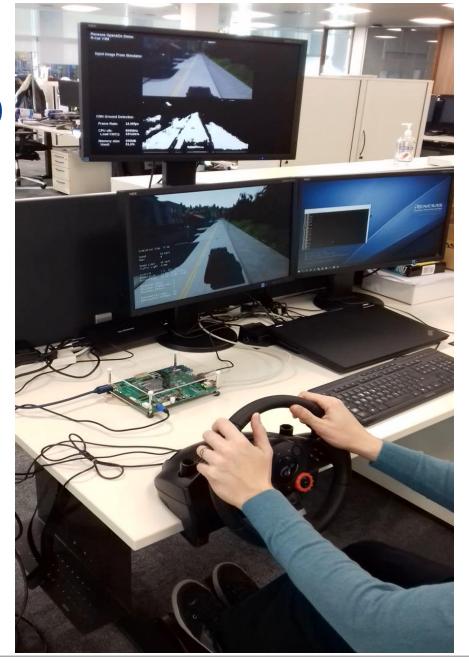
WHERE DOES RENESAS FIT IN?

- Renesas R-Car is aimed at providing SoCs (system on chips) for ADAS and AD systems.
 - The V device family is for vision processing e.g. V3M or V3H.
- We need a reproducible test environment for this Renesas IP development.
 - E.g. Convolution Neural Networks (CNN) or Shader IP.
- Simulators then provide a useful source of test data for this IP development.
- OpenADx would then allow easy connection of a simulator and the IP under test.
 - Customers can test their actual software within a wider test environment.
- Continuous integration test systems can be built on this technology.
 - Cost effective way to provide regression testing.

OpenADx facilitates this easy connection of different simulation environments to Renesas IP


RENESAS OPENADX DEMO

- One key application for Renesas is the use of computer vision to create smart cameras.
 - R-Car product range supports this application.
- For the OpenADx simulation testbed we have focused on this smart camera application.
 - Using the Renesas IMP-X5 simulator and the R-Car V3M development board.
- The goal is to demonstrate the integration of Renesas technology into the OpenADx framework using ROS2/DDS.



R-Car OpenADx Demo

OPENADX DEMO

OPENADX DEMO - PROCESSED IMAGES

PROCESSING OF STEREOSCOPIC IMAGE SEQUENCE

PROCESSING OF IMAGE SEQUENCE

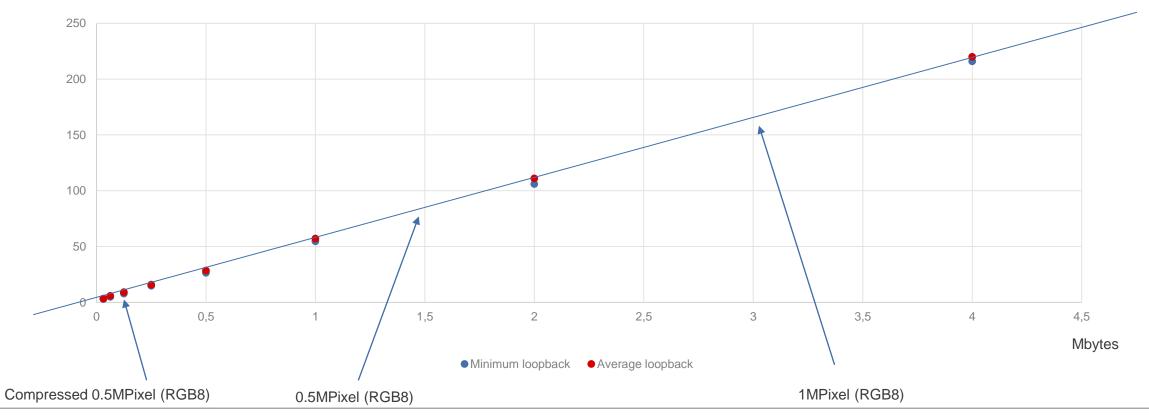
OPENADX COMPONENT SUBSTITUTION

- OpenADx has shown its benefit by allowing ROS2 compliant components to be easily interchanged.
- In this case,
 - The demo simulator was easily changed, substituting CARLA with AirSim.

• The R-Car IMP-X5 virtual platform could be easily replaced with R-Car target

hardware.

 Looped back AirSim image after IMP-X5 simulator annotates it with a white frame.



DEMO PERFORMANCE

- While the demo today runs at 15FPS, some effort was needed to get to this level.
 - Images are 0.5Mpix (1024x512 RGB) and compressed for faster transfer.
 - Pipelining is used.
- Simulator camera sensors are a significant overhead.
 - Need to render an image for each sensor.
 - CARLA 0.8.4 simulation step (frame rate) timings (best case, default conditions),
 - Screen only
 -> 15msecs (66 FPS)
 - With 2 x 0.5Mpixel (RGB) -> 60msecs (15 FPS)
 - With 2 x 2Mpixel (RGB) -> 130msecs (7 FPS)
 - AirSim V1.1.10
 - 1 x 0.3Mpixel (RGB) -> +65msecs (15 FPS)
- Using "Hardware in the loop" was significantly faster than using the IMP-X5 IP simulator.

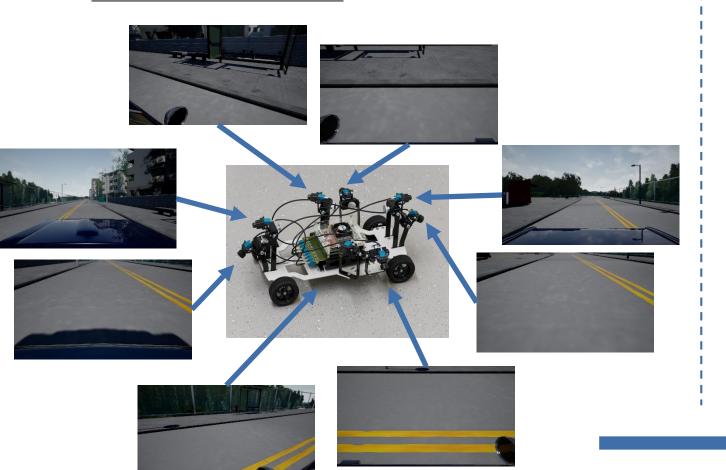
ROS2/DDS LOOPBACK TIMINGS – BENEFIT OF COMPRESSION

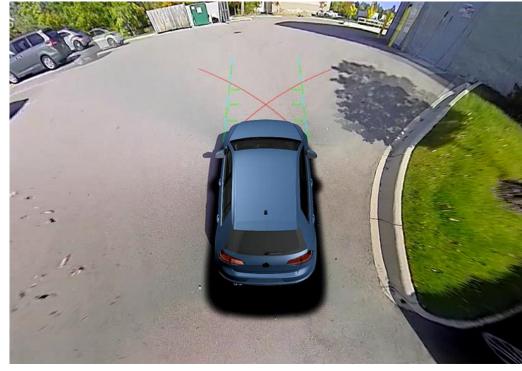
ROS2 Remote Loopback (msec)

DDS EASE OF USE

- Using DDS was not quite plug and play.
- Corporate firewalls a problem.
- Routers/switches a problem.
 - Can block multicast, to prevent flooding of large networks.
- A functional DDS connection was no guarantee of a good image streaming rate.

Once its working then its very easy to add / remove ROS2/DDS compliant components!


DEMO SUMMARY


Highly desirable to accelerate the simulation environment to "faster than real time".

- Some simulators offer the ability to define the simulation step size (frame rate).
 - Depending on your processing performance you could run faster than real time.
- It was a challenge enough for us to run our simple scenario at real time on a laptop.
- AD is probably well over an order of magnitude worse requirement for simulation environment.
 - More cameras + higher resolution + other sensors.

SCALED UP ADAS SYSTEM

Multiple sensors morphed into 3D surround image.

CONCLUSION

- OpenADx and ROS2/DDS has enabled easy substitution of components in a simulation environment.
 - It allows simulators or hardware to be tested in different simulation environments.
 - Open source software is a helpful medium to spread this.

Renesas see the value of Open Source Software and will continue to contribute.

- There are challenges in getting good image rates from simulators.
 - Need scalable simulators and compute platforms for multiple, high resolution sensors.
 - Building compression into the simulators can help.
 - The higher the frame rate the better, enabling accelerated testing.

Renesas are highly motivated to be part of the creation of scalable simulation environments.

Evaluate the Sessions

Sign in and vote at eclipsecon.org

+1

