
An Introduction to OSGi

Alexandre Alves

June 24, 2008

Short Bio

Employed by Oracle Corp.
 Previously at BEA Systems

Architect for WebLogic Event Server (rebranded into
Oracle CEP)
 Light-weight application server just for event processing
 Completely built on top of Equinox/OSGi and completely

modular

OASIS BPEL 2.0 spec committee

Agenda

History
Benefits

Architecture

Bundles

Services

Conclusion

History

The OSGi Alliance is an independent non-profit
corporation
 Deutsche Telekom, Nokia, Samsung, etc
 IBM, Oracle, IONA, etc

OSGi technology is the dynamic module system for Java
 First release in May 2000
 Latest version 4.1 was released in May 2007

OSGi technology provides a
 service-oriented,
 component-based environment for developers
 and offers standardized ways to manage the software

lifecycle.

Agenda

History

Benefits
Architecture

Services

Summary

Benefits

Problem Domain
 In large and complex systems, different components need to evolve

separately
Developed by different teams
Re-used from other products
Some components need more patches than others

Solution Domain
 Organize components as independent versioned modules

Modules define public interface and dependencies
Design and implement for re-use!

 Bind modules dynamically and verify constraints

Benefits

Dynamic module system for Java
 Java does not define the concept of a module
 Closest to it would be a JAR

Has no clear definition of its interfaces, dependencies, or
version

Dynamic module system for Java
 One can load new classes into a Class-Loader, but cannot

un-load
 No standard way of loading new features into a running

platform
Different technology/vendors have different approaches
(e.g. JBI, J2EE)

Agenda

History

Benefits

Architecture
Bundles

Services

Conclusion

OSGi Framework Layered Architecture

The Framework is split up into
different layers
 Execution Environment – the VM
 Module Layer – Module system

for the Java Platform
 Lifecycle Layer – Dynamic

support
 Service Layer – Module

collaboration
OS + Hardware

Execution Environment

Se
cu

rit
y

Module

Lifecycle

Services
Bundles

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Execution Environment

Execution Environment
 The VM used to launch the

Framework
 The OSGi specification originated

on the J2ME platform
 Framework implementations can

scale down to small devices and
scale up to large server
environments

OS + Hardware

Execution Environment

Se
cu

rit
y

Module

Lifecycle

Services
Bundles

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Module Layer

Module system for the Java
Platform
 Enforces visibility rules
 Dependency management
 Supports versioning of bundles,

the OSGi modules

Sophisticated modularity
framework
 provides for class space

consistency for bundles
 supports multiple versions of

packages and bundles

OS + Hardware

Execution Environment

Se
cu

rit
y

Module

Lifecycle

Services
Bundles

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Lifecycle Layer

Lifecycle Layer provides API to
manage bundles
 Installing
 Starting
 Stopping
 Updating
 Uninstalling
 All dynamically supported at runtime

OS + Hardware

Execution Environment

Se
cu

rit
y

Module

Lifecycle

Services
Bundles

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Service Layer

Provides an in-VM service model
 Services can be registered and

consumed inside a VM
 Again all operations are dynamic
 Extensive support for notification of

the service lifecycle

OS + Hardware

Execution Environment

Se
cu

rit
y

Module

Lifecycle

Services
Bundles

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Key Concepts

For most users, there are really just two main concepts to
learn
 Bundles

Supported by Execution Environment, Module, and
Lifecycle layers

 Services

Supported by the Lifecycle and Service layers

Agenda

History

Benefits

Architecture

Bundles
Services

Conclusion

Bundle as Module

OSGi technology’s modularity unit
 Or, in enterprise terms, OSGi technology’s deployment unit
 Again, main advantage of bundles is to achieve better re-use

Regular JAR file
 Java code
 Resources
 OSGi specific entries in MANIFEST.MF

Bundle Definition

MANIFEST.MF

 Bundle-SymbolicName:
 Bundle-Version:

 Import-Package:
 Export-Package:

 Bundle-Classpath:
 Bundle-Activator:

bundle
export-package import-package

Importing and Exporting Packages

Import-Package/Export-Package
 Explicit dependency model

Rigid documentation of public interface of module, which
can be shared amongst development teams

Helps with build automation (don’t under-estimate the
effort of building large systems)

 Allows dynamic selection (i.e. resolve) of dependencies

Allows framework to find best suitable provider of a
feature

Allows framework to dynamically change provider, useful
for patching system

Bundle Versioning

Versioning
 Import-Package: com.acme.foo;version="[1.0.0.1, 2.1)“

==> 1.0.0.1 <= version < 2.1

 Import-Package: com.acme.foo;version="1.0.0.1“
==> 1.0.0.1 <= version < ∞

 Import-Package: com.acme.foo;version="1.0“
==> 1.0.0.0 <= version < ∞

Importing and Exporting Packages

Attribute matching
 Declarative way of influencing resolving

 Example:

Bundle A: Import-Package:
com.acme.foo;company=ACME

Bundle B: Export-Package: com.acme.foo

Bundle C: Export-Package: com.acme.foo;
company="ACME";

Bundle Life-cycle

INSTALLED:
 Framework has bits installed

RESOLVED:
 Framework has resolved all dependencies successfully

STARTING:
 Framework is starting bundle, and invokes registered

activators in the process

ACTIVE:
 Bundle is running

STOPPING:
 Framework is shutting down bundle, and invokes registered

activators in the process

Bundle Activation

Use Bundle Activator to:
 Contribute to start and stop of bundle
 Allows bundle to manage resources (e.g. start thread, read

file)
 Specify Bundle-Activator and import org.osgi.framework
 Should perform work async, or return quickly
 Provides bundle implementer access to BundleContext object

Note-worthy: there is no standard way of installing/un-
installing bundle from remote agent

Bundle Activation

Bundle-SymbolicName: example.mybundle
Bundle-Version: 1.0.0
Bundle-Activator: example.MyBundleActivator
Import-Package: org.osgi.framework

public class MyBundleActivator implements BundleActivator {
public void start(BundleContext c) {

// Initialize
}
public void stop(BundleContext c) {

// Shutdown
}

}

Bundle Activation

Another approach is to use Spring-DM
 Specify bundle as a Spring-DM application context

Spring-Context: META-INF/spring-context.xml

 Use standard Spring-bean life-cycle interfaces
InitializingBean
DisposableBean

 By default, context is created asynchronously

IMO, cleaner and simpler

Bundle Activation

Bundle-SymbolicName: example.mybundle

Bundle-Version: 1.0.0

Spring-Context: META-INF/spring-context.xml

Import-Package:

<bean id=“bundleBean” class=“example.myBundleBean”

init-method=“init” destroy-method=“destroy” />

Agenda

History

Benefits

Architecture

Bundles

Services
Conclusion

Services

SOA deals with programming-in-the-large
 Interaction between system components (e.g. WS-clients and

WS-providers through WSDL)

OSGi Service Layer allows one to bring SOA concepts
(e.g. re-use, implementation abstraction) into the system
component implementation level (e.g. programming-in-the-
small)

Main benefit: de-coupling of interface and implementation
allows the selection of different implementation providers
 Authentication/Authorization providers: LDAP, file-system

Service Definition

Services are regular Java classes
 No need to implement technology-specific interfaces

A Service is made of three components:
 Service name(s)

“example.AuthenticationService”

 Service implementation
example.LDAPAuthenticationServiceImpl

 Service (reference) properties (optional)
String property type = (‘file-system” | ‘ldap”)

Service Interaction

Service-provider bundles:
 Register service name(s), implementation, and properties into

a Service Registry

Service-consumer bundles:
 Query Service Registry for a particular service name(s)

May do additional filtering by properties
 Communicates through returned class/interface, does not see

implementation

Service Registry:
 Similar to a map of services

Service Registration

AuthenticationService serviceImpl = new
LDAPAuthenticationServiceImpl();

Dictionary properties = new Dictionary();

properties.put(“type”, “LDAP”);

ServiceRegistration reference =

bundleContext.registerService(

new String [] {AuthenticationService.class.getName()},
serviceImpl,

properties);

Service Registration

Or alternatively using Spring-DM:

<bean name=“ldapService”
class=“LDAPAuthenticationServiceImpl” />

<osgi:service ref=“ldapService“
interface="example.AuthenticationService">
<osgi:service-properties>
 <beans:entry key=“type" value=“LDAP"/>
</osgi:service-properties>

</osgi:service>

Referencing Services

ServiceReference reference =
bundleContext.getServiceReference(

AuthenticationService.class.getName());

AuthenticationService service =

(AuthenticationService)

bundleContext.getService(reference);

Referencing Services

Or

<osgi:reference id=“authenService"

interface="example.AuthenticationService"/>

Services are Dynamic

Services are dynamic, they may come and go
 Service reference/service may be null/stale
 Should not cache references

ServiceListener used to keep track
 ServiceTracker raises the ServiceListener abstraction

Spring-DM proxies services, and will do the right thing

Agenda

History

Benefits

Architecture

Bundles

Services

Conclusion

Challenges

Mind-set:
 Understand that it is more work to create a modular solution,

but it pays off long-term

Design-time:
 Very large Import-Packages

Error-prone
 Non-intuitive Import-Packages

Hard to get correct when reflection is used (e.g. Kodo)

Challenges

Runtime:
 Hard to debug complex class-path resolving

instanceof just fails sometimes…
 Service availability race-conditions

Client applications referencing to services that have not
been bound it

Particularly a problem during start-up

Certain features are missing or too hard to use:
 Security, Configuration support, Transaction support

Adoption

Many framework implementations
 Equinox – Open source
 Felix – Open source
 Knopflerfish – Open source
 Concierge – Open source
 ProSyst

Spring Dynamic Modules for OSGi

All Eclipse-based systems run on Equinox
 Runtimes (e.g., RAP, Swordfish, Riena, ECF, EclipseLink)
 RCP, eRCP
 Tooling

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Adoption

Equinox OSGi as a component runtime

Consistent programming model from embedded to server

Reuse components across the spectrum

Embedded Rich Client Tooling Server

eRCP
Nokia
Sprint

NASA
JPMorgan
Lotus
Jazz
SAS
Swiss Rail
Daimler
Riena

Rational Suite
Borland
BEA
Jazz

RAP
Swordfish
Riena
WAS
BEA
Jazz
Spring

© 2008 by IBM Corp and Code 9; made available under the EPL v1.0 | March 2008

Lessons Learned when using OSGi

There are always opportunities for re-use
 Re-use within organization
 Re-use of standard services

HTTP Service
Service Tracker
Initial Provisioning
Declarative Services using Spring-DM
Start Level Service

Modularize at all levels
 WL-EvS programming model itself is a separate bundle, de-coupled

from other services, which means WL-EvS could in theory support
other programming models, such as SCA, etc.

Conclusion

Standard
 Several different implementations are available

Mature
 Proven technology
 Over 8 years-old (versus JSR-277/294)

Key-concepts
 Bundles: re-usability
 Service: flexibility, extensibility

Q/A

Alexandre Alves

alex.alves@oracle.com

	An Introduction to OSGi
	Short Bio
	Agenda
	History
	Slide 5
	Benefits
	Slide 7
	Slide 8
	OSGi Framework Layered Architecture
	Execution Environment
	Module Layer
	Lifecycle Layer
	Service Layer
	Key Concepts
	Slide 15
	Bundle as Module
	Bundle Definition
	Importing and Exporting Packages
	Bundle Versioning
	Slide 20
	Bundle Life-cycle
	Bundle Activation
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Services
	Service Definition
	Service Interaction
	Service Registration
	Slide 31
	Referencing Services
	Slide 33
	Services are Dynamic
	Slide 35
	Challenges
	Slide 37
	Adoption
	Slide 39
	Lessons Learned when using OSGi
	Conclusion
	Q/A

