
The PTP Runtime
Architecture

Randy M. Roberts
Los Alamos National Laboratory

rsqrd@lanl.gov

Overview

• Connection between PTP and remote
system

• Model mirrors remote system’s physical
structure

• Manages parallel job submission

• Manages debug job launch

• Views to display model elements

PTP Architecture Details

Eclipse

Compute nodes

• The PTP runtime
architecture is separated
into two components
• Java-side UI and parallel

model

• Native-side manages remote

system

• Communication via TCP

sockets

• The PTP debug system is
also separated into two
components
• not detailed here

Runtime Model

IResourceManager

interface

IAttributeDefinition

interface

IAttribute

interface

*

*

1

*

IPUniverse

interface

*

Runtime Model
IResourceManager

interface

IPMachine

interface

IPNode

interface

IPQueue

interface

IPJob

interface

*

IPProcess

interface
*

*

*

*

Resource Manager Plug-Ins

• Resource Managers are contributed via
Eclipse plug-Ins

• Plug-Ins supply:

resource manager

preference pages

creation wizard pages

job launch dynamic tab

• Multiple resource manager instances for
each contributed resource manager

AbstractResourceManager

abstract

IResourceManager

interface

MyResourceManager

concrete

AbstractRuntime
ResourceManager

abstract

IRuntimeSystem

interface

MyRuntimeSystem

concrete

AbstractRuntimeSystem

abstract

AbstractProxy
RuntimeSystem

abstract

IProxyClient

interface

MyProxy
RuntimeClient

concrete

AbstractProxyClient

abstract

AbstractProxy
RuntimeClient

abstract

Resource Manager
Implementation

Concrete Runtime
Resource Manager

• AbstractRuntimeResourceManager receives
asynchronous events from the concrete
IRuntimeSystem, implements IRuntimeEventListener

• Most work provided by concrete class’
protected doCreateRuntimeSystem() method

• Generic information passing via attributes

Concrete Runtime
System

• Decouples resource manager from proxy
client

• Almost everything handled by the base
class, AbstractProxyRuntimeSystem

• In most cases only passes the IProxyClient to
super()

Concrete Runtime
Proxy

• Runtime proxy client communicates with
remote system via TCP connection

• Wire protocol is encapsulated by the proxy
runtime hierarchy

• Implements client side of TCP proxy protocol

• Most work handled by abstract base classes

• Java-side communication handled by abstract
base class

Proxy Server

• Directly controls and monitors remote
system through native interfaces

• Implements server side of TCP proxy
protocol

• Need not be written in Java

• Runs as a user process, not as a daemon

• Needs no special privileges

