

Omniscient debugging
with TOD

Guillaume Pothier
Pleiad Lab. - University of Chile

http://pleiad.dcc.uchile.cl/tod

The problem with debugging

For developers, debugging is tedious

For companies, debugging is costly

2002 NIST study:
“Software developers already spend approximately

80% of development costs
on identifying and correcting defects.”

 National Institute of Standards and Technologies,
“Software errors cost U.S. economy $59.5 billion annually”, June 2002

(http://www.nist.gov/public_affairs/releases/n02-10.htm)

Why is it hard?

You see the symptom (crash, wrong result...)

You must find its root cause.

(which occurred before, maybe a long time ago, in a

different module, a different thread... and there probably is a whole chain of errors)

Unfortunately, commonly used debugging
approaches are not very helpful...

Breakpoint-based debugging

Lots of details about the state of the program at the breakpoint

But what happened before?

Log-based debugging

You might have the full program history
(if you have print statements at all potentially interesting locations)

But how do you analyze it?

Omniscient debugging

Automatic recording
of program execution

Interactive navigation
in execution history

Instantaneous traversal
of causal links

Omniscient debugging

You know everything

(you are the one, Neo ;-)

What is TOD?

Scalable omniscient debugger
for Java & AspectJ

(and initial support for Python)

Integrated into Eclipse

Architecture

1. At load-time, classes are instrumented.

2. At run-time, events produced by the execution of instrumented
classes are sent to a database.

3. The specialized high-performance, parallelizable database stores and
indexes the events.

4. The debugger front-end (Eclipse plugin) lets the programmer navigate
in the execution trace.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

