
Useful tools and methods we use for profiling our
Scout applications

Profiling Scout Applications

Judith Gull

Scout User Group Meeting – 27.10.2014

� Business Logic on Client or Server

� External Webservices

� Database Queries

� Network Connection

Why is it so slow?

� Can we measure and tune before productive use

� How do we need to setup application servers/database

Will the system still be usable with many
concurrent users?

3 common ways we profile Scout applications at BSI

� Very simple profiling with TuningUtility

� Custom Scout Profiler on Service-Level

� Loadtests with Apache JMeter

Agenda

Scout TuningUtility

TuningUtility.startTimer();

try {

SERVICES.getService(IPersonProcessService.class).load(formData);

} finally {

TuningUtility.stopTimer("load person formData");

}

#TUNING: load person formData took 125.671268ms

TuningUtility
Simple Timing for Development

try {

for (int i = 0; i < 100; i++) {

TuningUtility.startTimer();

codeToMeasure();

TuningUtility.stopTimer(«repeatCode", false, true);

}

} finally {

TuningUtility.finishAll();

}

#TUNING: repeatCode[100] sum=1114.534945ms min=7.799033ms

avg=11.145349ms median=10.510715ms max=29.425593ms

[without 1 smallest and 1 largest:…

TuningUtility – Repeated Calls

add to batch
Do not print yet

stop batch

without smallest/largest 1%

Summary – TuningUtility

� Very easy to use

� Do not use in production!

Custom Scout Profiler

Why a custom profiler?

� General purpose measure every method -> complicated

� Must be connected to JVM (often remotly with JMX)

� Difficult to profile both client and server

Profiling on Service Level

Displays server and client durations

in single table

Only shows service methods

(relevant for business)

-> much simpler than general purpose java profilers!

Measures durations in client and server

Works with different server/client time

Diagram Export

Profiling in Production

� stores profiling data as files on
the server

� possible to enable per user
session or global

� possible to run in production

� On profiling start: Register profiling
proxy service for every service

� Proxy Captures time and delegates
to “real” service

Implementation

Profiling Proxy Service

Service

Additional Profiling Tasks

Profiler jobProfiler =

Profiler.beginTask(getJobName(), "JOB");

try {

execRun(jobRunDesc);

}

finally {

jobProfiler.endTask();

}

� Add any additional profiling tasks where needed

Summary - Custom Scout Profiler

� Easy to use with deployed applications

� Mostly sufficient to get an idea where the performance
problems are

� Learnings: Measurements can be quite different (use multiple)

Load Testing with Apache JMeter

Load Testing Scout Applications

Prepare
Tests for
JMeter

Run Load
Tests

Analyze
Results

Optimize

Write Testcases, Plan

Setup Infrastructure,

multiple test clients

Multiple phases,

Include manual

Testers

JMeter Graphs

and Tables

Prepare test client for JMeter

� Small Scout Extension for JMeterTests

(creating session, formatting output)

� Prepare Testcases: Implement most common use cases

Configure Tests in JMeter

� Create Plans to simulate real users

� Configure random executions

� CSV Test Properties for multiple
executions

Distribute Load Test Client

� Export special product file with Scout JMeter extension,
project specific test cases, configuration

� Headless application (GUI rendering is not measured)

Simulation with increasing load over time

Summary – Load Tests

� Load tests are useful

�there is usually room for improvement

�problems are not always obvious

� Load tests are not free, require careful planning, significant
amount of time to prepare

� Difficult to map “simulated users” to actual users

Questions

