
1

The Next Generation of Eclipse: e4

Mike Milinkovich
Executive Director
Eclipse Foundation

2

Changing Environment

� New Technologies: RIA Applications and Cloud Computing
� AJAX, Flash, Silverlight
� Amazon E2 and S3, Google Docs, etc

� Dynamic languages becoming more mainstream
� JavaScript, Ruby, Python, PHP

� UI programming is changing
� XAML, CSS

3

Goals of e4

� Make it easier to write and deploy applications across computing
environments (RIA, Desktop, Server, Cloud, Embedded)
� Support Eclipse for the web

� Make it easier to write plugins
� Support dynamic languages for plugin development

� Allow better control over the look of Eclipse based products
� Remove the IDEness of Eclipse based products and applications

� More diversity of contributors to the core platform

4

Commitment to 3.x Compatibility

�We are committed to protecting your investment in the
current 3.x SDK and RAP

� Ongoing development in 3.x for >5 years
� Targeted enhancements, bug fixes, new platforms
� e4 items that are backwards compatible

� Co-existence as long as needed
� Think Apache 1.x and Apache 2

5

Eclipse Today

� Eclipse Platform delivers
extensible frameworks for
building applications

� Desktop oriented
applications

� Java centric

Eclipse Platform

JDT CDT RCP Apps

6

What can we learn from the web?

Separate style information from implementation
� CSS based skinning

Include a scripting language (JavaScript is an “obvious”
candidate)

Model the Workbench / make it available as a “DOM”

7

What’s not great about the web?

Confusing array of choices leads to business risk
� Ajax: Dojo/GWT//Rico/Qooxdoo/…
� RIA: Silverlight vs. Flash/Flex/AIR

No component model or programming model beyond
JavaScript
� It’s OK for today’s generation of Web applications, but for
development scalability and broad appeal, the status quo won’t
work

8

Eclipse Tomorrow

Help

Preferences

Logging

Persisting

Data

Shared

Resources

Search

Eclipse Application Services

Desktop

AJAX
Cloud Services

RIA

Dynamic Languages

9

Key Architectural Goals

� Eclipse Platform as Services
� Mixed use web applications

� Modeled and Declarative UI

� SWT for the Web
� Mixed use web applications

10

Eclipse Platform as Services

� Eclipse SDK provides a number of frameworks
� e.g. Selection, Drag&Drop, Progress, Help, Registry, Preferences,
etc.

� These are what you write your plugins against

� Migrate the existing SDK frameworks to be 1st class
services
� Clearer component boundaries to allow reuse in new contexts
� Want well defined and documented set of RESTful interfaces for
each service

� Existing Eclipse plug-in model will remain

11

Services allow for…

Write Plug-ins in non-Java languages
� Wider audience, skillset
� Some languages more appropriate for some problems
� Initially JavaScript

JavaScript in the Workbench possibilities
� Write/recording/edit macros
� Runtime modification of behaviour
� Workflow orchestration

� e.g. selection side effect behaviour

Plug-ins can now be distributed
� Running in different memory spaces

12

Key Architectural Goals

� Eclipse Platform as Services

� Modeled and Declarative UI

� SWT for the Web

13

Modeled UI

Presently
� Eclipse UI components tightly couple look and behavior
� The hierarchy of containment is fixed

� e.g. workbench window->perspective->view/editor

� Results in IDEness creep into RCP applications

Modeled UI
� Create a DOM-like model of the workbench using EMF
� Model can be changed using external tools

� Create domain specific UI models to customize programming model
� Workbench is no longer the starting point
� Ex. UI Model for Investment Banking

14

Workbench Model

Add diagram

15

Advantages to Modeled UI

� Forces us to clean up our architecture

� Simplifies part assembly, allows new structures
� E,g, nesting of Java editors in the Compare editor

� More flexible RCP applications
� Wider audience for RCP applications

16

Lose the “Eclipseness” of RCP Apps

17

Flexible User Interfaces

18

Declarative UI

Declarative construction
� E.g. XSWT, XUL, …

Declarative styling via CSS
� Radically restyle Eclipse
� Simplify task of styling

Use a separate, pluggable styling engine
� CSS would allow sharing of styling information between desktop and
related web pages

tab {font-family: Verdana; height: 23px; }

tab.active {start-color: #afc0eb; end-color: #7a96df; }

tab.inactive {start-color: #ffffff; end-color: #ece9d8; }

19

The Makeover

20

The Designers Vision…

21

Key Architectural Goals

� Eclipse Platform as Services

� Modeled UI

� SWT for the Web

22

SWT on the Web

• SWT Browser Edition
� Selective migration of high value widgets
� E.g. StyledText cross compiled to run in web browser

• Write plugins in Javascript, run in either location

• Access common services which can be remoted
� Dependency injection of services from any language

• Multi-user enable the workbench

23

Demo – SWT Browser Edition

Flickr x-compliled Javascript with Dojo
Flickr x-compiled to ActionScript in Flash
Flickr in Java in WPF native

24

Eclipse on an iPhone?

25

Timeline

� Individual work areas will move at own pace
� Graduate as they become ready

� Overall “e4” platform builds with regular milestones

� Need to sync up with changes in 3.x code

� Checkpoint / re-assess after 1 year

� Deliver in 2 years

26

We Want Participation!

• Building a new, innovative platform

• New code, less complexity - your opportunity

• The SDK and RAP committers are totally psyched, but we
must support the 3.x stream too

• Join the conversation!

https://dev.eclipse.org/mailman/listinfo/e4-dev

27

THANKS!

Questions?

