
Integration Builds
The integration build occurs automatically at 8:00 AM every Monday.
In config.xml, the CC project is ecfIntegration. The buildType is I. The build is off the HEAD. 
     <  =" - . " ant buildfile cc build xml
            ="0800" time
            =" " day monday
            =" . " > target ecf copyIntegration
         <  =" " =" " /> property name mapVTag value HEAD
         <  =" " =" . " /> property name feature value ecf core
         <  =" " =" " /> property name buildIdentifier value false
         <  =" " =" " /> property name buildType value I
         <  =" " =" " /> property name genFVSuffix value false
      </ > ant

cc-build.xml
In cc-build.xml, the target is ecf.copyIntegration, which depends on ecf.build which depends on 
intgration.init. The target integration.init just calles the script replaceVDATE-TIMEproperties.sh with the 
arument cctimestamp. cctimestamp is a property passed to cc-build.xml from Cruisecontrol. This script 
just edits the file integration.properties.TEMPLATE to set timestamp equal to v<year><month><day>-
<hour><minute>. The cctimestamp gotten from Cruisecontrol has this information but not in this 
format.

ecf.build.xml
The first thing ecf.build does is bring in the integration.properties file, which sets 
${timestamp}. It then sets forcecontextQualifier to ${timestamp}. A typical value is v20081013-0800 .
buildId is set to timestamp also. Note that in config.xml, buildIdentifier is set to false. If it were not false, 
buildId would be ${timestamp}-{buildIdentifier}.
Then, ecf.build calls the PDE builder. The buildfile is build.ecf.xml.
Depending on the buildType, build.ecf.xml sets either the property CVSbranch or CVShead. The integration 
build is done off of HEAD, and so the property CVShead is set.  Based on this property, build.ecf.xml 
then calls either the ant target getBranch or getHead. These targets update the monitored files.
Note that in config.xml, the integration build monitors ${localcopyRelease_2_0}, and config.xml defines 
this property as follows.
<  =" 2 0"property name localcopyRelease_ _
  ="/ / / 2 0/ . . / / " /> value home ted workanonRelease_ _ org eclipse ecf framework bundles

Then, build.ecf.xml sets the property do.P2. This property is not set for the integration build. The purpose 
of this property is to determine whether to call ant_p2_local_workaround.xml. What 
ant_p2_ocal_workaround.xml does is copy the platform stuff from /opt/build.ecf/platform_plugins to 
/opt/build.ecf/ecf.build/plugins so that all the references get resolved. With the integration build, we 
actually want to build everything so we do not set do.P2.
build.ecf.xml prints out the values of some of its properties to nohup.out as follows.

. : ecf build
[ ]              echo Click on the results link to get copies of the latest Daily builds
[ ] -------------- - .  -------------- echo cc build xml
[ ] . . :  =  echo build environment properties javacFailOnError true

10/13/08 1 of 3 Ted Kubaska



[ ] . . :      =  echo build environment properties buildingOSGi true
[ ] . . :     .  = / / 3.4 5/  echo build environment properties eclipse home opt eclipse M eclipse
[ ] - .                             = / . - 20081013-0800.  echo cc build xml logfile logs ecf core Iv log
[ ] :                                    echo buildIdentifier false
[ ] :                                         20081013-0800 echo buildId v
[ ] :                                              echo buildType I
[ ] :                                             echo mapVTag HEAD
[ ] :                                       echo mapVersionTag HEAD
[ ] :                        = 20081013080042 echo cctimestamp timestamp
[ ] ------------------------------------------------------------------- echo
[ ] :          = 20081013-0800 echo forceContextQualifier forceContextQualifier v
[ ]  / / . / / . - 20081013-0800.     . java Using opt build ecf logs ecf core Iv log file as build log
[ ] - . :                        = 0 echo cc build xml buildResult
[ ] :                        = 20081013080042 echo cctimestamp timestamp

Then, build.ecf.xml calls build.xml, which completes the PDE build. Much of this is standard PDE build 
stuff, but note that we have a customTargets.xml in /opt/build.ecf/ecf.core.

customTargets.xml
The file customTargets.xml does the actual checkout of the source files. The target getMapFiles gets the 
map files. “Getting” here means a cvs export; export gets a copy of the files without the corresponding 
CVS directories. Note that it chooses what map files to get with ${mapVersionTag}. The command is 
actually cvs -r ${mapVersionTag}.
What is ${mapVersionTag}?  If it's not defined it's the same as ${mapVTag}, which for the integration 
build is HEAD. When it is defined, it's p2_workaround_1. When it's defined as p2_workaround_1, then 
we're not using a map file that has the platform stuff in it; also, the feature.xml file does not have the 
platform stuff listed.
The destination for the map files is ${basedir}/maps.cvs where ${basedir} is /opt/build.ecf. The map files 
are then copied to ${buildDirectory}/maps where 
${buildDirectory} is /opt/build.ecf/ecf.build and the token CVSTag in the map files is replaced with 
${mapVTag} which in the case of the integration build is HEAD (it is defined in config.xml).
Here's an important item to mention. Consider the file 
${buildDirectory}/finalFeaturesVersions.properties. Because this file is in the build directory, it is created 
anew with each build. We use the contents of this file to get the name of the zips we make.
First of all, where does finalfeaturesversions.properties get its values? I think from the feature.xml of 
releng/features/org.eclipse.ecf.core-feature. In finalfeaturesversions.properties, the property 
org.eclipse.ecf.core is defined.
<   ="${ }/ . "/> property file buildDirectory finalFeaturesVersions properties
<  =" " property name archiveFullPath
   ="${ }/${ }/ . . . -${ . . . }. "/> value buildDirectory buildLabel org eclipse ecf core org eclipse ecf core zip

For example, for an integration build, org.eclipse.ecf.core is 2.0.1.v20081013-0800.
Then, for our build, the sdk zip file is the combination of  the core and examples zips.
<  ="${ }/${ }-${ . . . }. "> zip destfile zipPath sdk org eclipse ecf core zip
   <  ="${ }/${ }-${ . . . }. " /> zipfileset src zipPath core org eclipse ecf core zip
   <  ="${ }/${ }-${ . . . }. " /> zipfileset src zipPath examples org eclipse ecf examples zip
</ > zip

Once the build is complete (that is the target ecf.build has finished), then the target ecf.copyIntegration 
in build.ecf.xml is called. This last target is pretty straightforward. All it does is copy the zip output to 
/opt/build.ecf/ecf.build/${buildType}-${timestamp} and all the update files to /opt/build.ecf/ecf.build/updateSite.
Then, control goes back to config.xml, which calls the ant publisher. In the case of integration build, the 
ant publisher is antint.xml with target editmappsf.

10/13/08 2 of 3 Ted Kubaska



antint.xml
The purpose of antint.xml is mainly to copy over the built files to dev.eclipse.org. It also makes a map file 
and a psf file for the platform stuff. Note that we end up building a lot more for the integration build 
than is actualy necessary, but these map and psf files pull out what is necessary. 
The file runs three shell scripts. These scripts create files from templates. Some specific information is 
encoded in these templates, and we think we can make them more general by getting information from 
one of the generated properties files in ecf.build.
Currently, we make ant_p2_workaround.xml, which is not used. We use the local version instead. The 
non-local version gets the latest platform stuff from the integration directory on dev.eclipse.org rather 
than from the platform_plugins directory.
Then, we just copy everything over to dev.eclipse.org. We use sshexec to make the directory that will 
contain our output and scp to put the output in those directories.
Finally, we call antp2tag.xml.
<  =" 2 . "> ant antfile antp tag xml
   <  =" " =" " /> property name tagThis value HEAD
</ > ant

antp2tag.xml
For integration builds, we just tag the HEAD with ${timestamp}. But for release builds, we want to tag 
the branch Release_2_0 with ${timestamp}.
antp2tag.xml does the following:
<  =": : . . :/ / " cvs cvsRoot ext tkubaska@dev eclipse org cvsroot rt
  ="  -  ${ } ${ } . . / / / . . . .  command rtag r tagThis timestamp org eclipse ecf protocols bundles ch ethz iks r_osgi remote
             .
             .

10/13/08 3 of 3 Ted Kubaska


	Integration Builds
	cc-build.xml
	ecf.build.xml
	customTargets.xml
	antint.xml
	antp2tag.xml


