OpenPASS_Conventions.md

OpenPASS Conventions

17.3.2020

General

OpenPASS is based on modern C++ (currently C++17). For coding guidelines, please refer to ISO C++ Core

Guidelines
Headers/Sources
e Use as file extension for header files
e Use as file extension for source files

Naming Conventions

Concise Summarized Naming Conventions Example

#pragma once

namespace openpass::component::algorithm

{

/* fooBar.h */

class FooBar

{

private:
static constexpr int MAGIC_NUMBER {-999}%};
int myMember;

lowerCamelCase
FooBar();

UpperCamelCase

openpass: :component: :common: :Ports inputPorts;
used as model

openpass: :component: :common: :Ports outputPorts;
used as model

public:

void Bar();
UpperCamelCase

void BarBar(bool flag, int counter);
lowerCamelCase

//
//

//
//

//

//

//

//

//

void YaaBar(); /* Yaa = Yet Another Abbreviation */ //

UpperCamelCase
¥

Namespaces

File: to be discussed
Class: UpperCamelCase

Constants: UPPER_CASE
Members:

Ctor:

Inputs of the class if

Outputs of the class if

Methods:

Arguments:

Abbreviations:


https://github.com/isocpp/CppCoreGuidelines

OpenPASS_Conventions.md 17.3.2020

* Use lowercase for namespaces

® Use singular form for namespaces where appropriate
® Use base namespace

* Core uses

* Components use

® Use the appropriate namespace for the type your component:

® Code with shared scope (e.g. ) hamespaces are separated in:
© For everyone eg.
© Common for components s eqg.
© For the core only eg.

¢ Discussion:
Example: ,

Classes

* C(lasses should be named descriptively according to the functionality they implement with an
name
® A Class implementing an Interface should have the Interfaces name (see below), with the
portion removed

Example:
Methods

* Methods should be descriptively named in
Example: Method for retrieving the time of day should be named

Member Variables

* Member variables should be descriptively named in
* Normally, it is sufficient to use the classes name directly:
Example: The member variable containing the AgentNetwork should be named

Input / Output Signal Naming

* Components use a special form of signal transmission. For easier use, the following abstraction is
recommended:

2/5



OpenPASS_Conventions.md

* Discussion: Wrap in and further

namespace openpass::component::common

{
class Port {... };

using Ports = std::map<int, Port *> Ports;

Additional Stuff

e Use for abbreviations used in files, classes, methods, or variables

17.3.2020

* This does not apply if the abbreviation is the entire name or the beginning of the name - in such a case

the name is written with the rules for the appropriate type

o —
° -
o -
e Use (and ) for all constants

* Enums should be preferably defined as enum class; as such, enum names should be in

* Decorate container by type aliases and use
Example:
® Use // for comments

Avoid

* Do not use Hungarian notation for variables names ( - )

* Do not specify the type of the underlying implementation ( - )
* Do not use magic numbers in the code; explicitly define constants instead

¢ Do not use for comments

* Do not use global variables

Exceptions

* Autogenerated code does not need to follow the coding conventions
Example: Signals/Slots (QT):

Formatting

e A file is provided at the root level

* Itis recommended to auto-format the files on save (see Beautifier Plugin)

3/5


https://doc.qt.io/qtcreator/creator-beautifier.html

OpenPASS_Conventions.md

* Note, we aim for auto-formatting commits for better comparability.

* Proposal:

BasedOnStyle: 1lvm
Language: Cpp
ColumnLimit: ©
IndentWidth: 4
AccessModifierOffset:
IncludeBlocks: Regroup
IncludeCategories:
- Regex:
Priority:
- Regex:
Priority: 1
- Regex:
Priority: 2

-4

-1

'r¢(gtest|gmock) /)"
A<[rQ]"

'A¢Q"

AlignTrailingComments: true
BreakConstructorInitializers: AfterColon
ConstructorInitializerAllOnOneLineOrOnePerLine:
AllowShortFunctionsOnASinglelLine: None
KeepEmptylLinesAtTheStartOfBlocks: false

true

BreakBeforeBraces: Custom

BraceWrapping:
AfterClass: true
AfterControlStatement: true
AfterEnum: true
AfterFunction: true
AfterNamespace: false
AfterObjCDeclaration: true
AfterStruct: true
AfterUnion: true
AfterExternBlock: true
BeforeCatch: true
BeforeElse: true
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true

ForEachMacros: [ foreach, Q FOREACH, BOOST_ FOREACH,

QBENCHMARK, QBENCHMARK_ONCE ]

Coding Conventions

Interfaces

forever, Q FOREVER,

* Interfaces should be named descriptively according to the functionality they outline with an

name
Example: Interface for the world =

17.3.2020

* Interfaces are abstract classes, and as such provide pure virtual functions only, withtou any default

implementation.

4/5



OpenPASS_Conventions.md 17.3.2020

Exmaple:
* Interface methods do not exibit default parameters.
* We excessively use gmock, so for every interface a fake interface should be provided
Example:
Note: Following Roy Osherove, we use Fake instead of Mock, whick allows to distinguish Mocks and
Stubs more easily in the code.

Documention

* Use Doxygen for documentation
* As Doxygen automatically populates the documentation of base class methods to derived ones, do not
document derived methods, unless there is a good reason to do so.

End Of Line

® Use linux line endings

® Recommendations:
o Under windows add to your file
© Under linux add to your file

5/5



