
OCL2

April 2006!1

A presentation of OCL 2

Object Constraint Language

Christian Hein, Fraunhofer FOKUS
April 2006

OCL2

April 2006!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

OCL2

April 2006!3

Overview

• Motivation and short history

• OCL
• structure of an OCL constraint
• basic types
• accessing objects and their properties
• collections

OCL2

April 2006!4

Motivation
• Graphic specification languages such as UML can describe

often only partial aspects of a system

• Constraints are often (if at all) described as marginal notes
in natural language

• almost always ambiguous
• imprecise
• not automatically realizable/checkable

• Formal Languages are better applicable

+age : Integer

Employee

please no underaged employees

age>18

informal

more formal

OCL2

April 2006!5

Motivation 2

• Traditional formal languages (e.g. Z) require good
mathematical understanding from users

• mostly applied in academic world, not in industry
• hard to learn, to complex in application

• The Object Constraint Language (OCL) has been
developed to achieve the following goals:

• formal, precise, unambiguous
• applicable for a large number of users (business or system

modeler, programmers)
• Specification language
• not a Programming language

+age : Integer
Employee

inv: self.age>18

OCL2

April 2006!6

History

• Developed in 1995 from IBM‘s Financial Division
• original goal: business modeling
• Insurance department
• derived from S. Cook‘s „Syntropy“

• Belongs to the UML Standard since Version 1.1
(1997)

• OCL 2.0 Final Adopted Specification (ptc/
03-10-14) October 2003

• developed parallel to UML 2.0 and MOF 2.0
• core OCL (basic or essential OCL)

OCL2

April 2006!7

Language features

• Specification language without side effects
• Evaluation of an OCL expression returns a value – the model

remains unchanged! (even though an OCL expression maybe used
to specify a state change (e.g., post-condition) the state of the
system will never change)

• OCL is not a programming language (no program logic or flow
control, no invocation of processes or activation of non-query
operations, only queries)

• OCL is a typed language, each OCL expression has a type. It is
not allowed to compare Strings and Integers

• Includes a set of predefined types
• The evaluation of an OCL expression is instantaneous, the

states of objects in a model cannot change during evaluation

OCL2

April 2006!8

Where to use OCL

• Constraints specification for model elements in UML
models

• Invariants
• Pre- and post conditions (Operations and Methods)
• Guards
• Specification of target (sets) for messages and actions
• initial or derived values for attributes & association ends

• As „query language“

• Constraints specification in metamodels based on
MOF or Ecore
• metamodels are also models
• possible kinds of constraints

• invariants, pre- and post conditions, initial or derived values

OCL2

April 2006!9

OCL Constraint

+age : Integer

Employee

age : Integer = 17

Christian : Employee

age : Integer = 32

Tom : Employee

age : Integer = 20

Peter : Employeeinv: self.age>18

instances of the type
Employee

context Employee inv: self.age>18

constraint

OCL expression
kind of constraint

context for the expression

OCL2

April 2006!10

kind of constraints (Invariants)

• inv invariant: constraint must be true
• for all instances of constrained type at any time
• Constraint is always of the type Boolean

context Employee  
inv: self.age > 18

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)

OCL2

April 2006!11

kind of constraints 2 (Pre- and Postconditions)

• pre precondition: constraint must be true, before
execution of an Operation

• post postcondition: constraint must be true, after
execution of an Operation

• self refers to the object on which the operation was called
• return designates the result of the operation (if available)
• The names of the parameters can also be used

context Employee::raiseWage(newWage:Integer)
 pre: newWage > self.wage
 post: wage = newWage

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)

OCL2

April 2006!12

kind of constraints 3 (others)

• body specifies the result of a query operation
• The expression has to be conformed to the result type of the operation

context Employee::getWage() : Integer
body: self.wage

• init specifies the initial value of an attribute or
association end

• Conformity to the result type + Mulitiplicity
context Employee::wage
init: wage = 900

• derive specifies the derivation rule of an attribute or
association end
context Employee::wage
derive : wage = self.age * 50

• def enables reuse of variables/operations over multiple
OCL expressions
context Employee
def: annualIncome : Integer = 12 * wage

Employee
age : Integer
wage : Integer

raiseWage(newWage : Integer)
getWage() : Integer

OCL2

April 2006!13

OCL Metamodel

• OCL 2.0 has MOF Metamodel

• The Metamodel reflects OCL‘s abstract syntax

• Metamodel for OCL Types
• OCL is a typed language

• each OCL expression has a type
• OCL defines additional to UML types:

• CollectionType, TupleType, OclMessageType,….

• Metamodel for OCL Expressions
• defines the possible OCL expressions

OCL2

April 2006!14

OCL Types Metamodel

OCL2

April 2006!15

OCL Types

• Primitive Types
• Integer, Real, Boolean, String
• OCL defines a number of operations on the primitive types
• + , - , * , / , min() , max() , … , for Integer or Real
• concat(), size(), substring() , … , for String

• OCLModelElementTypes
• All Classifiers within a model, to which OCL expression belongs, are

types

• Collection Types
• CollectionType is abstract, has an element type, which can be

CollectionType again
• Set: contains elements without duplicates, no ordering
• Bag: may contain elements with duplicates, no ordering
• Sequence: ordered, with duplicates
• OrderedSet: ordered, without duplicates

OCL2

April 2006!16

OCL Types 2

• TupleType
• Is a “Struct” (combination of different types into a single

aggregate type)
• is described by its attributes, each having a name and a type

• VoidType
• Is conform to all types

OCL2

April 2006!17

Basic constructs for OCL expressions

• Let, If-then-else
context Employee inv:
let annualIncome : Integer = wage * 12 in
if self.isUnemployed then
 annualIncome < 5000
else
 annualIncome >= 5000
endif

• Let expression allows to define a (local) variable

• If-then-else construct (complete syntax)
if <boolean OCL expression>
then <OCL expression>
else <OCL expression>
endif

+age : Integer
+wage : Integer
+isUnemployed : Boolean

Employee

OCL2

April 2006!18

Accessing objects and their properties (Features)

• Attribute:
context Employee inv: self.age > 18
context Employee inv: self.wage < 10000
context Employee inv: self.isUnemployed

• Operations:
context Employee inv: self.getWage() > 1000

+getWage() : Integer

+age : Integer
+wage : Integer
+isUnemployed : Boolean

Employee

OCL2

April 2006!19

Accessing objects and their properties (Features) 2

• Accessing enumerations with ´::´
context Employee inv:
self.position=Position::TRAINEE implies self.wage<500

+getWage() : Integer

+age : Integer
+wage : Integer
+isUnemployed : Boolean
+position : Position

Employee

+CTO
+CEO
+JUNIOR_MANAGER
+SENIOR_MANAGER
+STUDENT
+TRAINEE

«Enumeration»
Position

OCL2

April 2006!20

Accessing objects and their properties (Features) 3

• Association ends:
• allow navigation to other objects
• result in Set
• result in OrderedSet, when association ends are ordered

 context Company inv: if self.budget<50000
 then self.employees->size() < 31
 else true
 endif

+getWage() : Integer

+age : Integer
+wage : Integer
+isUnemployed : Boolean

Employee

+name : String
+budget : Integer

Company +company

1

+employees

1..*

OCL2

April 2006!21

Collections Operations (Iterations)

• some defined operations for collections
• isEmpty(), size(), includes(),…

• Iteration operations
• Select/Reject
• Collect
• ForAll
• Exists
• Iterate

OCL2

April 2006!22

Collections Operations (Iterations) 2

• select and reject create a subset of a collection
• (result: Collection)

context Company inv:
 self.employees->select(age < 18) -> isEmpty()

• Expression will be applied to all elements within the collection,
context is then the related element

context Company inv:
 self.employees->reject(age>=18)-> isEmpty()

OCL2

April 2006!23

Collections Operations (Iterations) 3

• collect specifies a collection which is derived
from some other collection, but which contains
different objects from the original collection
(resulttype: Bag or Sequence)

context Company inv: self.employees->collect(wage)
->sum()<self.budget

-- collect returns a Bag of Integer

• Shorthand notation
self.employees.age

• Applying a property to a collection of elements will automatically
be interpreted as a collect over the members of the collection
with the specified property

OCL2

April 2006!24

Collections Operations (Iterations) 4

• forAll specifies expression, which must hold for all objects in a
collection (resulttype: Boolean)

context Company inv: self.employees->forAll(age > 18)

• Can be nested
context Company inv:
self.employees->forAll (e1 |  

self.employees->forAll (e2 |
e1 <> e2 implies e1.pnum <> e2.pnum))

• exists returns true if the expression is true for at least one
element of collection (resulttype: Boolean)

 context Company inv:
 self.employees->exists(e|e.pnum=1)

+getWage() : Integer

+age : Integer
+wage : Integer
+isUnemployed : Boolean
+position : Position
+pnum : Integer

Employee

OCL2

April 2006!25

Collections Operations (Iterations) 5

• iterate is the general form of the Iteration, all previous
operations can be described in terms of iterate
collection->iterate(elem : Type; acc : Type =

<expression> | expression-with-elem-and-acc)

• elem is the iterator, variable acc is the accumulator, which gets an
initial value <expression>.

• Example SELECT operation:
collection-> select(iterator | body)
-- is identical to:
collection->iterate(iterator; result : Set(T) = Set{} |
if body
then result->including(iterator)
else result
endif)

OCL2

April 2006!26

Predefined Operations

• OCL defines several Operations that apply to all objects
• oclIsTypeOf(t:OclType):Boolean

• results is true if the type of self and t are the same
context Employee inv:
self.oclIsTypeOf(Employee) -- is true
self.oclIsTypeOf(Company) -- is false

• oclIsKindOf(t:OclType):Boolean
• determines whether t is either the direct type or one of the supertypes of

an object

• oclIsNew():Boolean
• only in postcondition: results is true if the object is created during

performing the operation

OCL2

April 2006!27

Predefined Operations 2

• oclAsType(t:OclType):T
• results in the same object, but the known type is the OclType

• allInstances
• predefined feature on classes, interfaces and enumerations
• results in the collection of all instances of the type in existence at

the specific time when the expression is evaluated
context Company inv:
Employee.allInstances()->forAll(p1|
 Employee.allInstances()->forAll(p2|
 p1 <> p2 implies p1.pnum <> p2.pnum)

+getWage() : Integer

+age : Integer
+wage : Integer
+isUnemployed : Boolean
+position : Position
+pnum : Integer

Employee

OCL2

April 2006!28

example model

+name : String

Company

+name : String
+dnum : Integer

Department

+company1

+departments*

+oper(in para1 : String, in para2 : Employee) : Integer

+name : String
+age : Integer
+pnum : Integer

Employee
+department

1

+employees

*

+transaction_volume : Integer
+name : String

Customer

+consultant 1

+customers *

OCL2

April 2006!29

Tips & Tricks to write better OCL (1/5)

• Keep away from complex navigation expressions!
• a customer bonusprogram have to be funded if a customer exists

which have a transaction volume more than 10000

context Company
inv: departments.employees.customers->exists(c|c.volume>10000)

implies bonusprogram.isfunded

context Department
def: reachedVolume:Boolean = employees.customers-> exists(c|

c.volume>10000)

context Company
inv: departments->exists(d|d.reachedVolume) implies

bonusprogram.isfunded

OCL2

April 2006!30

Tips & Tricks to write better OCL (2/5)

•Choose context wisely (attach an invariant to
the right type)!

•two persons who are married are not allowed to work at
the same company:

context Person
inv: wife.employers>intersection(self.employers)
->isEmpty() and husband.employers
->intersection(self.employers)->isEmpty()

context Company

inv: employees.wife->intersection(self.employees)->isEmpty()

CompanyPerson

0..n0..n

+employers

0..n

+employees

0..n0..1
0..1

+wife

0..1
+husband 0..1

OCL2

April 2006!31

Tips & Tricks to write better OCL (3/5)

• Avoid allInstances operation if possible!
• results in the set of all instances of the modeling element and

all its subtypes in the system
• problems:

• the use of allInstances makes (often) the invariant more complex
• in most systems, apart from database systems, it is difficult to

find all instances of a class

context Person
inv: Person.allInstances->
forAll(p| p. parents->size <= 2)

context Person
inv: parents->size <= 2

OCL2

April 2006!32

Tips & Tricks to write better OCL (4/5)
• Split complicated constraint into several separate

constraints !
• Some advantages:

• each invariant becomes less complex and therefore easier to read and
write

• the simpler the invariant, the more localized the problem
• maintaining simpler invariants is easier

 context Company inv: self.employees.wage-> sum()<self.budget and
self.employees->forAll (e1 | self.employees ->forAll (e2 | e1 <> e2
implies e1.pnum <> e2.pnum)) and self.employees->forAll(e|e.age>20)

context Company
inv: self.employees.wage->sum()<self.budget
inv: self.employees->forAll (e1 | self.employees->forAll (e2|e1<>

 e2 implies e1.pnum <> e2.pnum))
inv: self.employees->forAll(e|e.age>20)

OCL2

April 2006!33

Tips & Tricks to write better OCL (5/5)

• Use the collect shorthand on collections!
context Person
inv: self.parents->collect(brothers) -> collect(children)->notEmpty()

context Person inv: self.parents.brothers.children->notEmpty()

• Always name association ends!
• indicates the purpose of that element for the object holding the

association
• helpful during the implementation: the best name for the

attribute (or class member) that represents the association is
already determined

OCL2

April 2006!34

Summary

• focus was on the “core” part of OCL

• core OCL can be used for UML2 as well as MOF
metamodels

• constraint for metamodels can be used for computing
metrics or check design guidelines

• additional courseware about some of these topics is
available

OCL2

April 2006!35

References

• Jos Warmer and Anneke Kleppe – The Object Constraint
Language – Second Edition

• OCL 2.0 Final Adopted Specification (ptc/03-10-14)
• UML 2.0 Infrastructure Specification: (formal/05-07-05)

