
© 2007 IBM; made available under the EPL v1.0 | September 26, 2007

Extensible C++ Parsing

Mike Kucera
Jason Montojo
IBM Eclipse CDT Team

2 © 2007 IBM Corporation; made available under the EPL v1.0

Motivation

� We want to properly support other dialects of C++

� C/C++ Language Extensions for Embedded Processors

� ISO/IEC DTR 18037

� Vendor-specific C++ Extensions

� GNU g++

� Intel C++

� Microsoft Visual C++

� XL C++

� C++0x (extension of ISO C++)

3 © 2007 IBM Corporation; made available under the EPL v1.0

Requirements

� Flexible

� Support multiple dialects of C++

� Accurate

� Useful error reporting

� Refactoring

4 © 2007 IBM Corporation; made available under the EPL v1.0

Requirements & LPG

� Flexible

�LPG facilitates creation of parsers for related languages

� Accurate

�LPG’s backtracking LR algorithm cannot handle ambiguities in ISO

C++ grammar

5 © 2007 IBM Corporation; made available under the EPL v1.0

Ambiguities in C++

� Identifiers and type names are syntactically the same

� Lexers in CDT are not aware of types

� For example: x * y;

� Binary multiplication of x and y?

� Declaration of pointer of type x called y?

� Cannot disambiguate unless we know what x is

6 © 2007 IBM Corporation; made available under the EPL v1.0

Ambiguities in C++ (cont.)

� Two solutions:

� Parse every alternative

• Store each possibility within the AST

• Analyze the tree afterwards to choose between conflicting
alternatives

• Currently used by CDT’s GNU C/C++ parsers

� Collect type information during the parse

• Resolve ambiguities as they are encountered

• Backtrack as necessary if we follow the wrong alternative

• Currently implemented by next generation modular C99 parser
(which will be the basis of modular C++ parser)

7 © 2007 IBM Corporation; made available under the EPL v1.0

Solution #1: Parse Every Alternative

� Benefits:

� Accurate – we can choose to keep the alternative that results in

fewer errors

� Drawbacks:

� AST contains more branches

� Need to select among each set of alternatives in order to get a

proper AST

• Need to traverse AST to locate ambiguities

8 © 2007 IBM Corporation; made available under the EPL v1.0

Solution #2: Collect Type Information

� Benefits:

� See things from a compiler perspective

• More accurate view of what errors exist in the code

� Disambiguate during parsing

• Saves time and space

� Drawbacks:

� See things from a compiler perspective

• Reported errors might sound confusing

� Resulting parse may not be accurate if code is not correct enough

9 © 2007 IBM Corporation; made available under the EPL v1.0

Parsing with LPG

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Binary expression

??

10 © 2007 IBM Corporation; made available under the EPL v1.0

LPG with Backtracking

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Binary expression

11 © 2007 IBM Corporation; made available under the EPL v1.0

Problems with LPG

� Enabling backtracking means actions are not executed until the
parse is complete

� Performance issue since all actions are saved (more than 1 per

token) until parsing is finished

� We cannot use actions to maintain a symbol table during the parse

� Without a symbol table, we cannot parse C++ accurately because

of ambiguities in the grammar

12 © 2007 IBM Corporation; made available under the EPL v1.0

Solution: Specialized Actions

� Implemented a new LPG parser driver to support A Backtracking
LR Algorithm for Parsing Ambiguous Context-Dependent
Languages, A. Thurston & J. Cody

� Trial Action

• Adding entries to symbol table

• Decide whether to backtrack or keep going

� Undo Action

• Removing entries from symbol table

� Final Action

• Building the AST

13 © 2007 IBM Corporation; made available under the EPL v1.0

Architecture

Lexer

Preprocessor

Backtracking
Driver

AST Building
Actions

Lexer

Preprocessor

AST Building
Actions

Symbol Table
Actions

Trial/Undo
Driver

Parse
Tables

Parse
Tables

Parse
Tables

Parse
Tables

14 © 2007 IBM Corporation; made available under the EPL v1.0

Parsing: Trial Phase

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Binary expression?

Is ‘x’ a type?

Yes, so this isn’t
a binary expression.

We should backtrack.

Store ‘x’ in symbol table

15 © 2007 IBM Corporation; made available under the EPL v1.0

Parsing: Undo Phase

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Binary expression?

X

X
Store ‘x’ in symbol table

16 © 2007 IBM Corporation; made available under the EPL v1.0

Parsing: Trial Phase #2

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Variable declaration

Store ‘x’ in symbol table

17 © 2007 IBM Corporation; made available under the EPL v1.0

Parsing: Final Phase

‘typedef’ ‘int’ ‘x’ ‘;’ ‘x’ ‘*’ ‘y’ ‘;’

Typedef declaration Variable declaration

Store ‘x’ in symbol table

18 © 2007 IBM Corporation; made available under the EPL v1.0

Relative Parser Throughput

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GNUCSourceParser C99Parser Trial/Undo C99Parser

19 © 2007 IBM Corporation; made available under the EPL v1.0

Questions?

