How Mature are Maturity Models?

Embedded Eclipse Day

Hans-Jürgen Kugler

Stuttgart, 25 June 2009
Maturity

- Personal development
- Product
- Processes
- ...

Model

- Psychology – development of personality
- Development stages of a product
- Probability of acceptable outcome
- ...

- Want to be able to “rank” a characteristic of a system based on defined criteria → model

- Defines some sort of measurement framework
- Experience based
Maturity

Model

• Purpose
• Rules of deployment
Maturity Model

- Ability to deliver quality products on time
- Supplier evaluation
Quality Management Maturity Grid
[Phil Crosby, Quality is Free, 1979]

Uncertainty
• Quality problems are the fault of the Quality department.

Awakening
• Quality management might actually fix problems properly.

Enlightenment
• Management and quality people are working together to fix problems.

Wisdom
• Quality management integrated in to the way we do things.

Certainty
• We do not have quality problems because we understand everything.
Quality_{product} = f (Quality_{process})
Maturity Model

Evolution of Process Maturity

Level 1 (Ad Hoc)
Processes documented & integrated Planning & forecasting takes place

Level 2 (Repeatable)
Processes defined and basic disciplined approach emerges

Level 3 (Defined)
Process understood and managed using quantitative methods

Level 4 (Managed)
Metrics collected

Level 5 (Optimizing)
Continuous improvement methods used

Ability to guarantee reliability, availability and service

Illustration Copyright © 2001, Mike Tarrani and Linda Zarette. All Rights Reserved

http://zaratetarrani.blogspot.com/
Automotive SPICE™
Process dimension of Automotive SPICE™ compared to ISO/IEC 15504

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN.1 Organizational alignment</td>
<td>ENG.1 Requirements elicitation</td>
<td>SUP.1 Quality assurance</td>
</tr>
<tr>
<td>MAN.2 Organization management</td>
<td>ENG.2 System requirements analysis</td>
<td>SUP.2 Verification</td>
</tr>
<tr>
<td>MAN.3 Project management</td>
<td>ENG.3 System architectural design</td>
<td>SUP.3 Validation</td>
</tr>
<tr>
<td>MAN.4 Quality management</td>
<td>ENG.4 Software requirements analysis</td>
<td>SUP.4 Joint review</td>
</tr>
<tr>
<td>MAN.5 Risk management</td>
<td>ENG.5 Software design</td>
<td>SUP.5 Audit</td>
</tr>
<tr>
<td>MAN.6 Measurement</td>
<td>ENG.6 Software construction</td>
<td>SUP.6 Product evaluation</td>
</tr>
<tr>
<td></td>
<td>ENG.7 Software integration</td>
<td>SUP.7 Documentation</td>
</tr>
<tr>
<td></td>
<td>ENG.8 Software testing</td>
<td>SUP.8 Configuration management</td>
</tr>
<tr>
<td></td>
<td>ENG.9 System integration</td>
<td>SUP.9 Problem resolution management</td>
</tr>
<tr>
<td></td>
<td>ENG.10 System testing</td>
<td>SUP.10 Change request management</td>
</tr>
<tr>
<td></td>
<td>ENG.11 Software installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENG.12 Software and system maintenance</td>
<td></td>
</tr>
<tr>
<td>ACQ.1 Acquisition preparation</td>
<td>RIN.1 Human resource management</td>
<td>OPE.1 Operational use</td>
</tr>
<tr>
<td>ACQ.2 Supplier selection</td>
<td>RIN.2 Training</td>
<td>OPE.2 Customer support</td>
</tr>
<tr>
<td>ACQ.3 Contract agreement</td>
<td>RIN.3 Knowledge management</td>
<td></td>
</tr>
<tr>
<td>ACQ.4 Supplier monitoring</td>
<td>RIN.4 Infrastructure</td>
<td></td>
</tr>
<tr>
<td>ACQ.5 Customer acceptance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACQ.11 Technical requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACQ.12 Legal and administrative requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACQ.13 Project requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACQ.14 Request for proposals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACQ.15 Supplier qualification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Process Group (SPL)</td>
<td>Process Improvement Process Group</td>
<td>Reuse Process Group (REU)</td>
</tr>
<tr>
<td>SPL.1 Supplier tendering</td>
<td>PIM.1 Process establishment</td>
<td>REU.1 Asset management</td>
</tr>
<tr>
<td>SPL.2 Product release</td>
<td>PIM.2 Process assessment</td>
<td>REU.2 Reuse program management</td>
</tr>
<tr>
<td>SPL.3 Product acceptance support</td>
<td>PIM.3 Process improvement</td>
<td>REU.3 Domain engineering</td>
</tr>
<tr>
<td>Automotive-SPICE</td>
<td>new HIS-Scope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not included in IS</td>
<td></td>
</tr>
</tbody>
</table>

Model is free of charge (after registration) available at www.automotivespice.com
Process Maturity

- 5 Optimizing
- 4 Predictable
- 3 Established
- 2 Managed
- 1 Performed
- 0 Incomplete
Quality impact of higher process maturity
Higher process capability increases product maturity.

Result of correlation.

Identified Clusters

- **Cluster 1**: Low process capability, late product maturity.
- **Cluster 2**: Transition phase, project management incomplete, product maturity differs.
- **Cluster 3**: High process capability, early product maturity.

Clear correlation between goal-oriented product maturity and process capability.
So – is there a problem?
Process Maturity

- 5 Optimizing
- 4 Predictable
- 3 Established
- 2 Managed
- 1 Performed
- 0 Incomplete
Process Fortress

Our processes will last!
Fast delivery of products requires Agile organisations

- Processes connect, they are not for control
- Maturity models are ok
- Their users may be immature

- We need the Inverse of Conway’s Law
 - Fast delivery of interdependent products can only be achieved by networked agile organisations
“Open Organisations”
“Value Orientation”
Control is good, trust is better.

Lenin\(^1\)