Safety Certification of Software-Intensive Systems with Reusable Components

Artemis: SafeCer

http://www.safecer.eu/
Overview

- Background Information
- SafeCer Technology & Tools
- Demonstration & Evaluation
- HEV Use Case (AVL+VIF)
Challenges

- Qualification, certification and verification of (sub-)systems accounts for up to **75% of the development cost**

- Component based design (CBD) has proven successful for system development but **dependability aspects** (e.g. safety) have not yet received full attention

- Techniques for **safety argumentation** exist but lack a unifying modelling and tool framework

- The issues above are present and similar in **many industrial domains**
SafeCer addresses the mentioned challenges

- SafeCer = pSafeCer + nSafeCer
- 4YR project – 2YR pilot started April 2011

- pSafeCer
 - Started April 1, 2011 (duration 2 years)
 - Focus on solution concepts
 - 23 partners

- nSafeCer
 - Started April 1, 2012 (duration 3 years)
 - 1 year overlap with pSafeCer
 - Focus on demonstration
 - 29 partners
SafeCer by Country

- **Austria**
 - AIT, VIF, AVL, TTTech, Thales Rail Signalling

- **France**
 - AdaCore, CEA-List, Delphi, Magillem Design Services, Thales Communications

- **Italy**
 - Akhela, Fondazione Bruno Kessler, Intecs, ResilTech, Vitrociset

- **Latvia**
 - Algorego, Latvian Railways, Riga Technical University

- **Spain**
 - GMV Aerospace & Defence, OSATU, Technical University of Madrid, Thales Alenia Space Espania, Traintic, ULMA, University of Montragon

- **Sweden:**
 - CrossControl, Mälardalen University, Quiviq, SP, Volvo CE, Volvo Global Trucks Technology
SafeCer by Competence

- **Avionics & Aerospace**
 - GMV Aerospace & Defence, Intecs, Thales Alenia Space Espania, Thales Communications, TTTech, Vitrociset

- **Automotive & CE**
 - AVL, Delphi, ResiLTech, Virtual Vehicle Competence Center, Volvo CE, Volvo Global Trucks Technology

- **Railway**
 - Latvian Railways, Thales Rail Signalling, Traintic

- **Technology Providers**
 - AdaCore, Akhela, Algorego, CrossControl, Magillem Design Services, OSATU, Quiviq, ULMA Embedded Solutions

- **Research Institutes**
 - AIT, CEA-LIST, Fondazione Bruno Kessler, Mälardalen University, Riga Technical University, SP, Technical University of Madrid, University of Mondragon
Project Objectives

• Overall objectives
 ▪ To **reduce the cost** of qualification, certification and verification
 ▪ To **provide a framework** for compositional development and certification of safety relevant embedded systems

• Main idea
 ▪ Process and technology that enable **composable qualification** and **certification**
 ▪ **Qualification/certification** of systems/subsystems based on **reuse of** already established **arguments** for and properties of their parts.

• Main industrial domains targeted:
 ▪ Automotive & Construction equipment
 ▪ Avionics
 ▪ Rail
 ▪ Cross-domain
The SafeCer Approach

- **SafeCer component (meta) model**
 - Based on component meta models from different domains
 - Covering certification properties & contracts from domain specific standards
 - Foundation for a certification framework

- **Safety Cases complying to safety standards** (e.g. ISO 26262)
 - Top-down process

- **Derive the overall confirmation measures for verification and validation**
 - Bottom-up process
 - Evidence gathered by analysis and testing

- Development of a Certification Tool Framework
- Development of a Certification Artefact Repository
- Concrete instantiations and demonstrations
Background: Certification Process

Safety standard

Company

Documentation

Independent Safety Assessor
Improved Certification Process

- Safety Standard
- Independent safety assessor

Company

System and Safety Requirements

Argumentation

Evidence

Verification

Safety Argumentation provides Guidance through Documents

Safety Approval

Certificate of Compliance

SafeCer
SafeCer Technology & Tools

TECHNOLOGY
• **Co-certification** = Development + Verification + Argumentation
• **Process** integrating development and argumentation
• **Component model** extended with safety contracts
• **Argumentation** – Composable safety argumentation and gathering of evidence
• **Verification and validation** integrating testing and formal verification

TOOLS
• **Certification Artefacts Repository (CAR)**
 ▪ A certification-oriented configuration management system
 ▪ Store certification evidence and end-to-end traceability
• **Certification Tool Framework (CTF)**
 ▪ Assumption: tight tools integration is not economically feasible
 ▪ Lightweight tool integration metadata exchange
• The CAR and CTF are configured with a process model
Demonstration & Evaluation

- **Instantiation of tools and technology**

- **Rail demonstrators**
 - Automatic braking system
 - Safety-system for railway crossings
 - On-board train control and monitoring

- **Aerospace demonstrators**
 - On board control system
 - Air-traffic control system

- **Automotive & Construction Equipment demonstrators**
 - Hybrid powertrain controller
 - Autosar basic software modules
 - Construction equipment product-line

- **Cross-domain & other domains demonstrators**
 - Ethernet switch used in 3 different domains
 - On-line diagnosis component
 - Healthcare demonstrator
Thank you for your attention!

www.safecer.eu
safecer-coordinator@safecer.eu