

AgilPro –
Agile Processes in the context of ERP

Title of the document

AgilPro Metamodel description

Document information

last changes version

14.02.2007 1.5

Document created by

Bernhard Bauer
Florian Lautenbacher
Stephan Roser

Address

Programming Distributed Systems Lab
Prof. Dr. Bernhard Bauer
Institute of Computer Science
University of Augsburg
Universitaetsstrasse 14
D-86135 Augsburg
Germany
phone: +49 821 598 2174
mail: bauer@informatik.uni-augsburg.de
www: www.ds-lab.org

Content
1 Summary 2
2 Meta-model of AgilPro: Abstract syntax & semantic 3
3 Meta-model of AgilPro: Concrete syntax 8

1

Images
Figure 1: AgilPro – View ... 3
Figure 2: AgilPro – Core .. 3
Figure 3: AgilPro – processes .. 4
Figure 4: AgilPro – control nodes .. 4
Figure 5: AgilPro – References .. 5
Figure 6: AgilPro – Events... 5
Figure 7: AgilPro – Functions .. 5
Figure 8: AgilPro – Organisations.. 6
Figure 9: AgilPro – Applications ... 6
Figure 10: AgilPro – Primitive Types .. 7
Figure 11: AgilPro – Data .. 7

2

1 Summary
This document describes the meta-model of the project AgilPro for agile processes in the context of ERP.
This project is funded by the high-tech future offensive of Bavaria, Germany and fosters business process
modeling in small and medium-sized enterprises (SMEs). Currently most companies only have proprie-
tary software like DATEV, Sage, MS Word or Excel which can not be integrated easily. A process inte-
gration is not supported, only an integration of data is done using import and export functionality. This is
the point where AgilPro fits in.
AgilPro is developed as a joint project between the University of Augsburg, Germany and eMundo
GmbH, Unterhaching. The AgilPro tool suite consists of several applications: the AgilPro LiMo, the
AgilPro Desktop applications, the Adapter and Integration framework and the AgilPro Enterprise Ser-
vices.
The AgilPro LiMo is a tool for modeling business processes based on the Eclipse platform. It is an
Eclipse RCP application where the model is based on a well-defined meta-model using the Eclipse Mod-
eling Framework EMF. This meta-model supports the code generation and offers several views for differ-
ent purposes: a business view for the manager, a technical view for the IT expert, an ISO 9000-view, an
ITIL-view, etc. The model itself is drawn using the Eclipse Graphical Editing Framework (GEF). This
document describes the underlying meta-model of AgilPro.
AgilPro will also be one of the cornerstones for the Eclipse Technology project Java Workflow Tooling
(JWT). JWT focuses the usage of a workflow modeling tool which has a clearly defined API and can be
rendered using several views. This is the Workflow Editing (WE) part of JWT. The WAM-part (Work-
flow Administration and Monitoring tools) focuses on the connection with a process engine, the deploy-
ment of the process, user administration, etc. For more information please refer to the website
http://www.eclipse.org/jwt.

3

2 Meta-model of AgilPro: Abstract syntax & semantic
This section describes the meta-model of Eclipse Java Workflow Tooling (JWT) and the underlying A-
gilPro contribution. The meta-model consists of several packages which are based on each other. The first
one describes the graphical constraints whereas the latter ones are for the “real” meta-model concepts.

Figure 1: AgilPro – View

Each element which is visible in the graphical pane is a GraphicalElement. This has a location called
Point with x and y value as well as a size (Dimension) specifying the width and height of the element.
Additional there is the concept of an EdgeDirection which specifies whether an edge has arrows on one,
both or none ends.

Figure 2: AgilPro – Core

Every element in JWT is a ModelElement. A ModelElement is the basic unit and the most abstract ele-
ment of our meta-model. Every model element can have a textual Comment. A special kind of a model
element is a NamedElement. All elements that have a name and optional an icon are at least NamedEle-
ments. A Package is a NamedElement and can have subpackages or other PackageableElements. This
enables the user to structure his/her processes that belong to a specific area or to structure other elements
that belong somehow together. A ReferencableElement is an element that can be packaged and referenced
by other other elements (so called References introduced later).

4

Figure 3: AgilPro – processes

All processes modelled with Eclipse JWT are Activities. An activity is a PackageableElement and can
therefore be structured in packages. An Activity is a subclass of Scope which includes all elements in a
graphical model. Examples for those elements are ActivityNodes and ActivityEdges. One example for an
ActivityNode is an Action which is executable (subclass of ExecutableNode) and has a name and optional
an icon (subclass of NamedElement). A StructuredActivityNode contains as an own scope itself Activ-
ityNodes and ActivityEdges, but is itself executable from other nodes, too. Each ActivityEdge connects
two ActivityNodes and might be constrained with a Guard which has a textualDescription and a more
detailedDescription which can be simple Boolean terms (using the OperationType) or more complex
terms connected through BooleanConnectors. Using the parameters of Activity (totalExecutionTime) and
of all Actions (targetExecutionTime) one can simulate the duration of the process and compare it with the
predefined value.

Figure 4: AgilPro – control nodes

To model the flow of several ExecutableNodes one can use ControlNodes. To model the start or finish of
a process the InitialNode and FinalNode can be applied. To model parallel process flows and the syn-
chronization afterwards one can use the ForkNode or the JoinNode respectively. For exclusive choices
and merges afterwards the DecisionNode and MergeNode are available to the modeller.

5

Figure 5: AgilPro – References

To include elements into the current activity that are normally outside the scope and defined for more
than one process model, one can use the Reference to point to an existing ReferenceableElement. These
References can be connected through ReferenceEdges with Actions. Example for a ReferenceableElement
would be a Role, an Application, Data, etc. as shown later.

Figure 6: AgilPro – Events

To have the possibility to react to events from outside, one can include an Event into the process model.
An Event is an ExecutableNode (similar to an Action). Each Activity includes an EventHandler who is
responsible for the handling of an occurred Event. Such an event could be the arrival of a message, a
time-out, etc.

Figure 7: AgilPro – Functions

6

Each Action can be clustered into specific Functions. A function describes the kind of an action (e.g. Ac-
counting). Each Function can be include in packages and might have several sub-functions belonging to
itself.

Figure 8: AgilPro – Organisations

Each Action can be performed either automatically or by a specific Role of an Organization. Roles are
defined not only for one process model, but for all processes and are therefore ReferencableElements.
Roles can be grouped in OrganisationUnits which themselves can have sub units, too.

Figure 9: AgilPro – Applications

Each Action can be executed manually or alternatively by specific applications of the IT system. Again,
Applications are defined for all kind of models and are therefore ReferencableElements. Each Application
can have an ApplicationType which clusters the applications. An application can be specified describing
the javaClass and method which should be invocated and in which jarArchive this class is.

7

Figure 10: AgilPro – Primitive Types

An Application needs input and output data for its execution. These could either be PrimitiveTypes like
textual StringTypes or numerical IntegerTypes or more complex types.

Figure 11: AgilPro – Data

Complex Data types can be described using their DataType which says something about the file format:
is it a simple text file, an XML-file, an Excel sheet, a Word document, etc. On the other side it is possible
to describe the InformationType, e.g. whether this is an order, an invoice, and so on. Actions either need
these Data for their execution (inputs) or produce them after execution (outputs). Each action can consist
of several parts, called parameters. Similar, applications can have parameters for their execution. To bind
these parameters together the DataMapping exists which belongs to an Action.

8

3 Meta-model of AgilPro: Concrete syntax
This section describes the concrete syntax of the AgilPro meta-model as it is displayed in the AgilPro
LiMo (for Light Modeller).

 Actions are rounded rectangles which are connected through ActivityEdges with a filled arrow and a con-
tinuous line. InitialNodes are normal circles, FinalNodes have a filled circle in the outer circle.

Actions and ActivityEdges InitialNode FinalNode

DecisionNodes and MergeNodes are diamonds, parallel flows and synchronization are modelled with
SplitNodes and JoinNodes using a filled bar and Events are circles with a symbol inside that specifies the
kind of the event.

DecisionNode / MergeNode SplitNode / JoinNode Event

The Reference to Roles, Applications and Data are symbolized with small icons and the name underneath.
They are connected using ReferenceEdges which are symbolized with a dashed line. This line can have
arrows for data elements specifying whether these are input or output data (or both, then the arrow is on
both line ends).

Role Application Data

The following shows an Activity with one Action between an InitialNode and a FinalNode which is per-
formed by the role Role, executed by one application and needs one input data and produces one output
data.

