
© 2006 IBM; made available under the EPL v1.0 |  August 8, 2006

Extensible Parsers - C99/UPC Parsers

Mike Kucera
Jason Montojo
IBM Eclipse CDT Team



2 © 2007 IBM Corporation; made available under the EPL v1.0

Overview

� Goals

� To create a parser framework that allows language extensions to 
be easily added to CDT

� Modularity

� Clean implementation, maintainability

� Performance

� Support for Unified Parallel C (UPC) needed by the Parallel 

Tools Project

� UPC spec is an extension to the C99 spec
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C99 Parser in CDT 4.0

� C99 parser base

� Designed to be extensible

� UPC parser 

� Built on top of C99 parser
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Language Extensibility in CDT

� What CDT currently provides

� Extension point for adding new parsers

� Map languages to content types

� Syntax highlighting can be extended to new keywords

� Add new types of AST nodes

� What CDT does not provide

� A parser that can be directly extended to support new syntax

� A reusable preprocessor
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C99 Preprocessor

� New preprocessor written from scratch

� Much cleaner implementation than DOM preprocessor

� DOM preprocessor:

• Lexing and preprocessing are combined, not modular

• Processes raw character stream, very complex code to do this

• Doesn’t handle comments properly

� C99 Preprocessor:

• Lexing and preprocessing are separated, modular

• Token based, input is first lexed into tokens then fed to 

preprocessor, much cleaner

• Comments are correctly resolved by the lexer
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C99 Parser in CDT 4.0

� Different approach than the DOM parser

� DOM parser completely hand written

� C99 Parser generated from grammar files using a parser generator

� Using LPG - LALR Parser Generator

� Bottom-up parsing approach

� Grammar file looks similar to the spec

� Some parts of DOM parser are reused

� AST

� LocationMap
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LPG – LALR Parser Generator

� Two parts

� The generator (lpg.exe)

• Generates parse tables from grammar file

• Parse tables are basically a specification of a finite state 

machine

� The runtime (java library)

• Contains the parser driver and supporting classes

• Parser driver interprets the parse tables
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LPG – LALR Parser Generator

� LPG is used by several eclipse projects including:

� Model Development Tools (MDT) 

� Graphical Modeling Framework (GMF) 

� Generative Modeling Technologies (GMT)

� Data Tools Platform (DTP) 

� SAFARI 

� Java Development Tools (JDT, in the bytecode compiler) 

� Part of Orbit project
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LPG – Benefits

� Automatic

� Computation of AST node offsets 

� Backtracking

� Syntax error recovery

� Clean separation of parser and the code that builds the AST

� Grammar file inheritance

� Source of parser extensibility



10 © 2007 IBM Corporation; made available under the EPL v1.0

C99 Grammar File Example

statement

::= labeled_statement

| compound_statement

| expression_statement

| selection_statement

| iteration_statement

| jump_statement

| ERROR_TOKEN

/.$ba consumeStatementProblem();  $ea./

iteration_statement

::= 'do' statement 'while' '(' expression ')' ';'

/.$ba consumeStatementDoLoop();  $ea./

| 'while' '(' expression ')' statement

/.$ba consumeStatementWhileLoop();  $ea./

| 'for' '(' expression ';' expression ';' expression ')' statement

/.$ba consumeStatementForLoop(true, true, true);  $ea./
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AST Building Actions

/**
* iteration_statement ::= 'while' '(' expression ')' statement
*/

public void consumeStatementWhileLoop() {

IASTWhileStatement whileStatement = nodeFactory.newWhileStatement();

IASTStatement body      = (IASTStatement)  astStack.pop();
IASTExpression condition = (IASTExpression) astStack.pop();

whileStatement.setBody(body);
body.setParent(whileStatement);
body.setPropertyInParent(IASTWhileStatement.BODY);

whileStatement.setCondition(condition);
condition.setParent(whileStatement);
condition.setPropertyInParent(IASTWhileStatement.CONDITIONEXPRESSION);

setOffsetAndLength(whileStatement);

astStack.push(whileStatement);
}
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Content Assist

� 5 simple grammar rules

ident ::= 'identifier' | 'Completion'

']' ::=? 'RightBracket' | 'EndOfCompletion'      

')' ::=? 'RightParen'   | 'EndOfCompletion'

'}' ::=? 'RightBrace'   | 'EndOfCompletion'

';' ::=? 'SemiColon'    | 'EndOfCompletion'

� First rule says that a Completion token can occur anywhere an 

identifier token can occur.

� Next 4 rules allow the parse to complete successfully after a 
Completion token has been encountered.
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Generating The Parser From Grammar Files
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Architecture of C99 Parser
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Extensibility – Supporting UPC

� UPC grammar file extends the C99 grammar file

� Adds new grammar rules for UPC syntax

� Generates new parse tables that recognize UPC

$Import

C99Parser.g

$End

iteration_statement

::=  'upc_forall' '(' expression ';' expression ';' expression ';'

affinity ')' statement

/.$ba consumeStatementUPCForallLoop(true, true, true, true); $ea./
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Extensibility – Supporting UPC

� Extend C99 classes.

Adds actions for new 

grammar rules
Adds mappings for new 
UPC keywords like 

‘upc_forall’

C99ParserAction

UPCParserAction

C99KeywordMap

UPCKeywordMap
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Extensibility – Supporting UPC

� Create AST node classes for new language constructs

UPCASTForallStatement

CASTForStatement
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Architecture of UPC Parser
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Performance
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Future Work

� Make the preprocessor reusable

� Reusable on any token stream

� Use for FORTRAN etc…

� Support for C++

� Advanced approach

� Provide compiler specific extensions 

� GCC, XLC etc…

� Further performance enhancements

� We haven’t spent much time on optimizations yet


