
© 2006 IBM; made available under the EPL v1.0 | August 8, 2006

Extensible Parsers - C99/UPC Parsers

Mike Kucera
Jason Montojo
IBM Eclipse CDT Team

2 © 2007 IBM Corporation; made available under the EPL v1.0

Overview

� Goals

� To create a parser framework that allows language extensions to
be easily added to CDT

� Modularity

� Clean implementation, maintainability

� Performance

� Support for Unified Parallel C (UPC) needed by the Parallel

Tools Project

� UPC spec is an extension to the C99 spec

3 © 2007 IBM Corporation; made available under the EPL v1.0

C99 Parser in CDT 4.0

� C99 parser base

� Designed to be extensible

� UPC parser

� Built on top of C99 parser

4 © 2007 IBM Corporation; made available under the EPL v1.0

Language Extensibility in CDT

� What CDT currently provides

� Extension point for adding new parsers

� Map languages to content types

� Syntax highlighting can be extended to new keywords

� Add new types of AST nodes

� What CDT does not provide

� A parser that can be directly extended to support new syntax

� A reusable preprocessor

5 © 2007 IBM Corporation; made available under the EPL v1.0

C99 Preprocessor

� New preprocessor written from scratch

� Much cleaner implementation than DOM preprocessor

� DOM preprocessor:

• Lexing and preprocessing are combined, not modular

• Processes raw character stream, very complex code to do this

• Doesn’t handle comments properly

� C99 Preprocessor:

• Lexing and preprocessing are separated, modular

• Token based, input is first lexed into tokens then fed to

preprocessor, much cleaner

• Comments are correctly resolved by the lexer

6 © 2007 IBM Corporation; made available under the EPL v1.0

C99 Parser in CDT 4.0

� Different approach than the DOM parser

� DOM parser completely hand written

� C99 Parser generated from grammar files using a parser generator

� Using LPG - LALR Parser Generator

� Bottom-up parsing approach

� Grammar file looks similar to the spec

� Some parts of DOM parser are reused

� AST

� LocationMap

7 © 2007 IBM Corporation; made available under the EPL v1.0

LPG – LALR Parser Generator

� Two parts

� The generator (lpg.exe)

• Generates parse tables from grammar file

• Parse tables are basically a specification of a finite state

machine

� The runtime (java library)

• Contains the parser driver and supporting classes

• Parser driver interprets the parse tables

8 © 2007 IBM Corporation; made available under the EPL v1.0

LPG – LALR Parser Generator

� LPG is used by several eclipse projects including:

� Model Development Tools (MDT)

� Graphical Modeling Framework (GMF)

� Generative Modeling Technologies (GMT)

� Data Tools Platform (DTP)

� SAFARI

� Java Development Tools (JDT, in the bytecode compiler)

� Part of Orbit project

9 © 2007 IBM Corporation; made available under the EPL v1.0

LPG – Benefits

� Automatic

� Computation of AST node offsets

� Backtracking

� Syntax error recovery

� Clean separation of parser and the code that builds the AST

� Grammar file inheritance

� Source of parser extensibility

10 © 2007 IBM Corporation; made available under the EPL v1.0

C99 Grammar File Example

statement

::= labeled_statement

| compound_statement

| expression_statement

| selection_statement

| iteration_statement

| jump_statement

| ERROR_TOKEN

/.$ba consumeStatementProblem(); $ea./

iteration_statement

::= 'do' statement 'while' '(' expression ')' ';'

/.$ba consumeStatementDoLoop(); $ea./

| 'while' '(' expression ')' statement

/.$ba consumeStatementWhileLoop(); $ea./

| 'for' '(' expression ';' expression ';' expression ')' statement

/.$ba consumeStatementForLoop(true, true, true); $ea./

11 © 2007 IBM Corporation; made available under the EPL v1.0

AST Building Actions

/**
* iteration_statement ::= 'while' '(' expression ')' statement
*/

public void consumeStatementWhileLoop() {

IASTWhileStatement whileStatement = nodeFactory.newWhileStatement();

IASTStatement body = (IASTStatement) astStack.pop();
IASTExpression condition = (IASTExpression) astStack.pop();

whileStatement.setBody(body);
body.setParent(whileStatement);
body.setPropertyInParent(IASTWhileStatement.BODY);

whileStatement.setCondition(condition);
condition.setParent(whileStatement);
condition.setPropertyInParent(IASTWhileStatement.CONDITIONEXPRESSION);

setOffsetAndLength(whileStatement);

astStack.push(whileStatement);
}

12 © 2007 IBM Corporation; made available under the EPL v1.0

Content Assist

� 5 simple grammar rules

ident ::= 'identifier' | 'Completion'

']' ::=? 'RightBracket' | 'EndOfCompletion'

')' ::=? 'RightParen' | 'EndOfCompletion'

'}' ::=? 'RightBrace' | 'EndOfCompletion'

';' ::=? 'SemiColon' | 'EndOfCompletion'

� First rule says that a Completion token can occur anywhere an

identifier token can occur.

� Next 4 rules allow the parse to complete successfully after a
Completion token has been encountered.

13 © 2007 IBM Corporation; made available under the EPL v1.0

Generating The Parser From Grammar Files

Grammar
File

Parse
Tables

Grammar
File

C99Lexer.g

C99Parser.g

Parser
Generator

lpg.exe

Parse
Tables

Recognizes

Tokens

Recognizes C99

Language

14 © 2007 IBM Corporation; made available under the EPL v1.0

Architecture of C99 Parser

C99
Parse

Tables

C99

Keyword

Map

C99

AST

Actions

C99
Lexer

C99
Source
Code

Token

Stream

AST

Preprocessor Parser

15 © 2007 IBM Corporation; made available under the EPL v1.0

Extensibility – Supporting UPC

� UPC grammar file extends the C99 grammar file

� Adds new grammar rules for UPC syntax

� Generates new parse tables that recognize UPC

$Import

C99Parser.g

$End

iteration_statement

::= 'upc_forall' '(' expression ';' expression ';' expression ';'

affinity ')' statement

/.$ba consumeStatementUPCForallLoop(true, true, true, true); $ea./

16 © 2007 IBM Corporation; made available under the EPL v1.0

Extensibility – Supporting UPC

� Extend C99 classes.

Adds actions for new

grammar rules
Adds mappings for new
UPC keywords like

‘upc_forall’

C99ParserAction

UPCParserAction

C99KeywordMap

UPCKeywordMap

17 © 2007 IBM Corporation; made available under the EPL v1.0

Extensibility – Supporting UPC

� Create AST node classes for new language constructs

UPCASTForallStatement

CASTForStatement

18 © 2007 IBM Corporation; made available under the EPL v1.0

Architecture of UPC Parser

UPC

Parse

Tables

UPC

Keyword
Map

UPC

AST

Actions

C99
Lexer

UPC

Source
Code

Token

Stream

AST

Preprocessor Parser

19 © 2007 IBM Corporation; made available under the EPL v1.0

Performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GNUCSourceParser C99Parser

20 © 2007 IBM Corporation; made available under the EPL v1.0

Future Work

� Make the preprocessor reusable

� Reusable on any token stream

� Use for FORTRAN etc…

� Support for C++

� Advanced approach

� Provide compiler specific extensions

� GCC, XLC etc…

� Further performance enhancements

� We haven’t spent much time on optimizations yet

