
Query/Views/Transformations

© 2006 ATLAS Nantes!1

Query/Views/Transformations

An introduction to the MOF 2.0 QVT standard
with focus on the Operational Mappings

Ivan Kurtev

ATLAS group, INRIA & University of Nantes, France
http://www.sciences.univ-nantes.fr/lina/atl/

Query/Views/Transformations

© 2006 ATLAS Nantes!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

Query/Views/Transformations

© 2006 ATLAS Nantes!3

Prerequisites

To be able to understand this lecture, a reader should be
familiar with the following concepts, languages, and
standards:

• Model Driven Engineering (MDE)
• The role of model transformations in MDE
• UML
• OCL
• MOF
• Basic programming concepts

Query/Views/Transformations

© 2006 ATLAS Nantes!4

Outline

• Overview of QVT

• QVT Requirements

• QVT Languages:
• Relations
• Core

• Presentation of Operational Mappings
• Case Study: Flattening UML Inheritance Hierarchies
• Basic Language Constructs

• Conclusions

Query/Views/Transformations

© 2006 ATLAS Nantes!5

Overview

• QVT stands for Query/Views/Transformations

• OMG standard language for expressing queries, views,
and transformations on MOF models

• OMG QVT Request for Proposals (QVT RFP, ad/
02-04-10) issued in 2002

• Seven initial submissions that converged to a common
proposal

• Current status (June, 2006): final adopted
specification, OMG document ptc/05-11-01

Query/Views/Transformations

© 2006 ATLAS Nantes!6

QVT Operational Context

• Abstract syntax of the language is defined as MOF 2.0 metamodel
• Transformations (Tab) are defined on the base of MOF 2.0 metamodels

(MMa, MMb)
• Transformations are executed on instances of MOF 2.0 metamodels (Ma)

QVT MMb

Mb

conformsTo

conformsTo

based on

conformsTo

conformsTo

MOF

MMa

Ma

conformsTo

conformsTo

conformsTo

M1

M2

M3

Engine

Tab

based on

input output
executed

Query/Views/Transformations

© 2006 ATLAS Nantes!7

Requirements for QVT Language

Some requirements formulated in the QVT RFP

Mandatory requirements
Query language Proposals shall define a language for querying models

Transformation
language

Proposals shall define a language for transformation definitions

Abstract syntax The abstract syntax of the QVT languages shall be described as MOF 2.0
metamodel

Paradigm The transformation definition language shall be declarative

Input and output All the mechanisms defined by proposals shall operate on models
instances of MOF 2.0 metamodels

Optional requirements

Directionality Proposals may support transformation definitions that can be executed in
two directions

Traceability Proposals may support traceability between source and target model
elements

Reusability Proposals may support mechanisms for reuse of transformation
definitions

Model update Proposals may support execution of transformations that update an
existing model

Query/Views/Transformations

© 2006 ATLAS Nantes!8

QVT Architecture

Relations

Operational
Mappings

Core

extends

RelationsToCore
Transformation

Black
Box

extends

extends

extends

• Layered architecture with three transformation languages:
• Relations
• Core
• Operational Mappings

• Black Box is a mechanism for calling external programs during
transformation execution

Query/Views/Transformations

© 2006 ATLAS Nantes!9

Conformance Points for QVT Tools

Interoperability Dimension

Language
Dimension

Syntax
Executable

XMI
Executable

Syntax
Exportable

XMI
Exportable

Core

Relations

Operational
Mappings

• Language dimension indicates the language a tool may execute
• Interoperability dimension indicates the syntax that a tool can

read
• 12 possible conformance points

! Note: Conformance to QVT is defined for tools and not for languages. The term
“QVT compliant language” is not defined in the specification.

Query/Views/Transformations

© 2006 ATLAS Nantes!10

QVT Languages

• Relations
• Declarative transformation language
• Specification of relations over model elements

• Core
• Declarative transformation language
• Simplification of Relations language

• Operational Mappings
• Imperative transformation language
• Extends Relations language with imperative constructs

QVT is a set of three languages that collectively provide a hybrid
“language”.

Query/Views/Transformations

© 2006 ATLAS Nantes!11

Overview of Relations Language

• Declarative language based on relations defined on
model elements in metamodels
• Object patterns that may be matched and

instantiated
• Automatic handling of traceability links
• Transformations are potentially multidirectional
• Supported execution scenarios:
• Check-only: verifies if given models are related in a certain way
• Unidirectional transformations
• Multidirectional transformations
• Incremental update of existing models

Query/Views/Transformations

© 2006 ATLAS Nantes!12

Overview of Core Language

• Declarative language based on relations defined on
model elements in metamodels
• Simpler object patterns
• Manual handling of traceability links
• Equal expressivity compared to the Relations language
• More verbose than the Relations language
• Core and Relations support the same set of execution

scenarios
• Usage options:
• Simple transformation language
• Reference point for defining the semantics of the Relations

language

Query/Views/Transformations

© 2006 ATLAS Nantes!13

Outline

• Overview of QVT

• QVT Requirements

• QVT Languages:
• Relations
• Core

• Presentation of Operational Mappings
• Case Study: Flattening UML Inheritance Hierarchies
• Basic Language Constructs

• Conclusions

Query/Views/Transformations

© 2006 ATLAS Nantes!14

Operational Mappings Language

This lecture presents Operational Mappings in details based on
an example case study

• Case study: Flattening UML class hierarchies
• Overall transformation structure

• Mapping rules

• Querying source models
• Object resolution operations

• Creating target objects

• Flow of control
• Other features

Query/Views/Transformations

© 2006 ATLAS Nantes!15

Case Study

Flattening UML class hierarchies: given a source UML
model transform it to another UML model in which only
the leaf classes (classes not extended by other classes)
in inheritance hierarchies are kept.

Rules:

• Transform only the leaf classes in the source model

• Include the inherited attributes and associations

• Attributes with the same name override the inherited
attributes

• Copy the primitive types

Query/Views/Transformations

© 2006 ATLAS Nantes!16

Source and Target Metamodel: SimpleUML

name
ModelElement

Classifier Packageable

Package

Model

Type

DataType PrimitiveType

abstract : Boolean
Class

Property

Generalization Association

owner1

ownedElements

*

type

1

general

1

generalizations *

owner

1

attributes *

target1

source

1

Query/Views/Transformations

© 2006 ATLAS Nantes!17

Example Input Model

name : String
ssn : String

Person

school : String
EnrolledInSchool

organizationName : String
Employed

Student Employee

«primitive type»
String

CarPhDStudent

firstName : String
lastName : String

FullName

name : FullName
Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends

Query/Views/Transformations

© 2006 ATLAS Nantes!18

Example Output Model

«primitive type»
String

Carname : String
ssn : String
school : String

PhDStudent

firstName : String
lastName : String

FullName

name : FullName
ssn : String
organizationName : String

Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends residesAt

Query/Views/Transformations

© 2006 ATLAS Nantes!19

Model Transformation expressed in 
Operational Mappings Language

Overall structure of a transformation program:

transformation SimpleUML2FlattenSimpleUML(in source : SimpleUML
 out target : SimpleUML);
…………………………………………………………………

main() {}

…………………………………………………………………
…helpers……………………………………………

…mapping operations………………

Signature:
Declares the transformation
name and the source and
target metamodels. 

in and out keywords indicate
source and target model
variables.

Entry point:
The execution of the transformation starts here by
executing the operations in the body of main

Transformation elements:
Transformation consists of mapping operations
and helpers. They form the transformation logic.

Query/Views/Transformations

© 2006 ATLAS Nantes!20

Mapping Operations

• A mapping operation maps one or more source elements into one
or more target elements

• Always unidirectional

• Selects source elements on the base of a type and a Boolean
condition (guard)

• Executes operations in its body to create target elements

• May invoke other mapping operations and may be invoked

• Mapping operations may be related by inheritance

Query/Views/Transformations

© 2006 ATLAS Nantes!21

Mapping Operations: Example (1)

• Consider the rule that transforms only leaf classes
• Selects only classes without subclasses
• Collects all the inherited properties
• Creates new class in the target model

mapping Class::leafClass2Class(in model : Model) : Class
when {not model.allInstances(Generalization)->exists(g |

 g.general = self)}

{
 name:= self.name;
 abstract:= self.abstract;

 attributes:=
 self.derivedAttributes()->map property2property(self)->asOrderedSet();

}

Operation body

Signature and guard

Query/Views/Transformations

© 2006 ATLAS Nantes!22

Mapping Operations: Example (2)

mapping Class::leafClass2Class(in model : Model) : Class
when {not model.allInstances(Generalization)->exists(g |

 g.general = self)}

Operation Signature and Guard

Operation nameSource element 
type

An optional sequence of
input/output parameters

Target element type

Guard

The Guard is an OCL expression used to filter source elements of a given type.
The mapping operation is executed only on elements for which the guard
expression is evaluated to true.

Query/Views/Transformations

© 2006 ATLAS Nantes!23

Mapping Operations: Example (3)

name:= self.name;

abstract:= self.abstract;
attributes:=
 self.derivedAttributes()->map property2property(self)->asOrderedSet();

Operation Body
The predefined variable self refers
to the source element on which the
operation is executed

The left-hand side of the
assignments denotes
properties of the target
element

Invocation of helper derivedAttributes

The keyword map is used to invoke
another mapping operation named
property2property over the elements
returned by the helper
derivedAttributes

The mapping operation body contains initialization expressions for the
properties of the target element. When an operation is executed over a
source element the self variable is bound to it and an instance of the target
type is created. Then the operation body is executed.

Query/Views/Transformations

© 2006 ATLAS Nantes!24

Helpers

• Helpers are operations associated to a type that
return a result

• Both primitive and model types can be used

• Helpers may be used to perform complex navigations
over source models

• Helpers have:
• List of input parameters
• An executable body

• Helper types:
• Side-effect free: Query helper;
• With side effect over input parameters: Helper

Query/Views/Transformations

© 2006 ATLAS Nantes!25

Helpers: Example

query Class::derivedAttributes() : OrderedSet(Property){
 if self.generalizations->isEmpty() then self.attributes

 else
 self.attributes->union(
 self.generalizations->collect(g |

 g.general.derivedAttributes()->select(attr |
 not self.attributes->exists(att | att.name = attr.name)

)
)->flatten()
)->asOrderedSet()

 endif
}

The query derivedAttributes is a side-effect free helper defined on classes. It
returns an ordered set of properties that contains the attributes defined in
a given class and the attributes derived from the its super classes. Derived
attributes are overridden by the defined attributes with the same name.
Note that this is a recursive helper. The variable self refers to the class on
which the helper is executed

The context type of the helper
derivedAttributes Result type

Query/Views/Transformations

© 2006 ATLAS Nantes!26

Invoking Mapping Operations

……………………………………………………

attributes:=
 self.derivedAttributes()->map property2property(self)->asOrderedSet();
……………………………………………………

mapping Property::property2property(in ownerClass : Class) : Property{
 name:= self.name;
 type:= self.type;

 owner:= ownerClass;
}

Assume we have a mapping operation property2property that simply copies a
property of a source class to a property of the target class. The target class
is already created by the previously shown rule leafClass2Class.

In order to invoke property2property on every attribute of the source class we
use the notation “->map”. It implies an iteration over a list of source
elements.

The notation “object.map” invokes a mapping operation on object as a source
element.

Invocation of property2property on every
member of the set returned by
derivedAttributes query

Query/Views/Transformations

© 2006 ATLAS Nantes!27

Resolving Object References
Assume that we write a mapping operation that transforms associations in the

source model to associations in the target model. In the target model an
association relates two classes derived from other two classes in the source
model. To identify these two classes in the target model the transformation
engine maintains links among source and target model elements. These links
are used for resolving object references from source to target model
elements and back.

An example of a mapping operation that transforms associations and uses
resolution of object references:

mapping Association::copyAssociation(sourceClass : Class) : Association {

name:=self.name;
source:=sourceClass.resolveByRule('leafClass2Class', Class)->first();
target:= self.target.resolveByRule('leafClass2Class', Class)->first();

}

resolveByRule is an operation that looks
for model elements of a given type (Class)
in the target model derived from a source
element by applying a given rule
(leafClass2Class).

Query/Views/Transformations

© 2006 ATLAS Nantes!28

General Structure of Mapping Operations

mapping Type::operationName(((in|out|inout) pName : pType)*) : (rName : rType)+

 when {guardExpression}
{

 init {}

 population {}

 end {}
}

init section contains code executed
before the instantiation of the
declared result elements

population section contains code that sets the
values or the result and the parameters
declared as out or inout. The population
keyword may be skipped. Population section is
the default section in the operation body.

end section contains code executed
before exiting the operation.

There exists an implicit instantiation section that
creates all the output parameters not created in
the init section. The trace links are created in the
instantiation section.

Query/Views/Transformations

© 2006 ATLAS Nantes!29

Apart from the implicit creation of objects in the instantiation section
there is an operation for creating and populating objects in mapping
operations

Operation object:

Object Creation and Population

object p : Property {
 name:= self.name;
 type:= self.type;

 owner:= ownerClass;
}

Variable name and
result type

Population or
property values

Query/Views/Transformations

© 2006 ATLAS Nantes!30

Imperative Constructs for Managing the Flow of Control

Operational Mappings is an imperative language. While many algorithms may be
implemented just by a set of mapping operations that invoke each other and
are supported by OCL expressions for navigation and iteration, there are
cases where more sophisticated control flow is needed. The following
imperative constructs are available:

• Compute

• While
• forEach
• Break

• Continue

• If-then-else

Query/Views/Transformations

© 2006 ATLAS Nantes!31

Features not Covered in the Lecture

• Packaging facilities:
• transformation libraries
• reuse of libraries

• Reuse facilities:
• rule inheritance and merging
• disjunctions of mapping operations

• Constructor operations

• Intermediate data

• Reusing and extending transformations

• Operation post condition: where clause

For more details consult the QVT specification: OMG document ptc/
05-11-01

Query/Views/Transformations

© 2006 ATLAS Nantes!32

Conclusions (1)

• QVT: Query/Views/Transformations – the OMG standard
language for model transformations in MDA/MDE;
• The issue of Views over models is not addressed;

• Query language based on OCL;

• A family of three transformation languages:
• Relations: declarative language
• Core: declarative language, simplification of Relations;
• Operational Mappings: imperative transformation language that

extends relations;

• Collectively QVT languages form a hybrid language;

Query/Views/Transformations

© 2006 ATLAS Nantes!33

Conclusions (2)

• Tool support is still insufficient (at the time of preparing of
this lecture – June 2006);

• QVT is not proved yet in non-trivial industrial like scenarios;

• Many issues need further exploration:
• Performance;
• Testing;
• Scalability of transformations;
• Ease of use;
• Handling change propagation;
• Incremental transformations;
• Adequacy of the reuse mechanisms;

Query/Views/Transformations

© 2006 ATLAS Nantes!34

Additional Materials

This lecture is accompanied by an implementation of the presented case
study. The code, the documentation, and the example models are available
from the MODELWARE web site.

